Suppr超能文献

使用贝叶斯马尔可夫链蒙特卡罗方法对疾病成本数据进行建模。

Use of Bayesian Markov Chain Monte Carlo methods to model cost-of-illness data.

作者信息

Cooper Nicola J, Sutton Alex J, Mugford Miranda, Abrams Keith R

机构信息

Department of Epidemiology and Public Health, University of Leicester, United Kingdom.

出版信息

Med Decis Making. 2003 Jan-Feb;23(1):38-53. doi: 10.1177/0272989X02239653.

Abstract

It is well known that the modeling of cost data is often problematic due to the distribution of such data. Commonly observed problems include 1) a strongly right-skewed data distribution and 2) a significant percentage of zero-cost observations. This article demonstrates how a hurdle model can be implemented from a Bayesian perspective by means of Markov Chain Monte Carlo simulation methods using the freely available software WinBUGS. Assessment of model fit is addressed through the implementation of two cross-validation methods. The relative merits of this Bayesian approach compared to the classical equivalent are discussed in detail. To illustrate the methods described, patient-specific non-health-care resource-use data from a prospective longitudinal study and the Norfolk Arthritis Register (NOAR) are utilized for 218 individuals with early inflammatory polyarthritis (IP). The NOAR database also includes information on various patient-level covariates.

摘要

众所周知,由于成本数据的分布情况,对其进行建模往往存在问题。常见的问题包括:1)数据分布严重右偏;2)零成本观测值占比显著。本文展示了如何通过使用免费软件WinBUGS的马尔可夫链蒙特卡罗模拟方法,从贝叶斯视角实现一个障碍模型。通过实施两种交叉验证方法来评估模型拟合度。详细讨论了这种贝叶斯方法相对于传统等效方法的相对优点。为了说明所描述的方法,我们利用了一项前瞻性纵向研究和诺福克关节炎登记处(NOAR)中218例早期炎性多关节炎(IP)患者的特定患者非医疗保健资源使用数据。NOAR数据库还包括各种患者层面协变量的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验