Suppr超能文献

鞭毛运动蛋白FliF的胞质C末端在鞭毛组装和旋转中的作用。

Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation.

作者信息

Grünenfelder Björn, Gehrig Stefanie, Jenal Urs

机构信息

Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.

出版信息

J Bacteriol. 2003 Mar;185(5):1624-33. doi: 10.1128/JB.185.5.1624-1633.2003.

Abstract

Twenty-six FliF monomers assemble into the MS ring, a central motor component of the bacterial flagellum that anchors the structure in the inner membrane. Approximately 100 amino acids at the C terminus of FliF are exposed to the cytoplasm and, through the interaction with the FliG switch protein, a component of the flagellar C ring, are essential for the assembly of the motor. In this study, we have dissected the entire cytoplasmic C terminus of the Caulobacter crescentus FliF protein by high-resolution mutational analysis and studied the mutant forms with regard to the assembly, checkpoint control, and function of the flagellum. Only nine amino acids at the very C terminus of FliF are essential for flagellar assembly. Deletion or substitution of about 10 amino acids preceding the very C terminus of FliF resulted in assembly-competent but nonfunctional flagella, making these the first fliF mutations described so far with a Fla(+) but Mot(-) phenotype. Removal of about 20 amino acids further upstream resulted in functional flagella, but cells carrying these mutations were not able to spread efficiently on semisolid agar plates. At least 61 amino acids located between the functionally relevant C terminus and the second membrane-spanning domain of FliF were not required for flagellar assembly and performance. A strict correlation was found between the ability of FliF mutant versions to assemble into a flagellum, flagellar class III gene expression, and a block in cell division. Motile suppressors could be isolated for nonmotile mutants but not for mutants lacking a flagellum. Several of these suppressor mutations were localized to the 5' region of the fliG gene. These results provide genetic support for a model in which only a short stretch of amino acids at the immediate C terminus of FliF is required for flagellar assembly through stable interaction with the FliG switch protein.

摘要

26个FliF单体组装成MS环,这是细菌鞭毛的一个核心运动组件,将该结构锚定在内膜中。FliF的C末端约100个氨基酸暴露于细胞质中,通过与鞭毛C环的一个组件FliG开关蛋白相互作用,对运动组件的组装至关重要。在本研究中,我们通过高分辨率突变分析剖析了新月柄杆菌FliF蛋白的整个细胞质C末端,并研究了鞭毛组装、检查点控制和功能方面的突变形式。FliF的最末端只有9个氨基酸对鞭毛组装至关重要。在FliF最末端之前缺失或替换约10个氨基酸会导致具有组装能力但无功能的鞭毛,这是迄今为止描述的首批具有Fla(+)但Mot(-)表型的fliF突变。进一步向上游去除约20个氨基酸会产生功能性鞭毛,但携带这些突变的细胞无法在半固体琼脂平板上有效扩散。位于FliF功能相关C末端和第二个跨膜结构域之间的至少61个氨基酸对鞭毛组装和性能不是必需的。发现FliF突变体版本组装成鞭毛的能力、鞭毛III类基因表达和细胞分裂阻滞之间存在严格的相关性。可以分离出运动抑制子用于非运动突变体,但不能用于缺乏鞭毛的突变体。其中一些抑制子突变定位于fliG基因的5'区域。这些结果为一个模型提供了遗传学支持,在该模型中,FliF最末端紧邻的一小段氨基酸通过与FliG开关蛋白的稳定相互作用对鞭毛组装是必需的。

相似文献

1
Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation.
J Bacteriol. 2003 Mar;185(5):1624-33. doi: 10.1128/JB.185.5.1624-1633.2003.
2
Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG.
Biochemistry. 2012 Jun 26;51(25):5052-60. doi: 10.1021/bi3004582. Epub 2012 Jun 14.
4
6
Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus.
J Bacteriol. 2015 Jan 1;197(1):63-72. doi: 10.1128/JB.02271-14. Epub 2014 Oct 13.
8
Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body.
Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6304-8. doi: 10.1073/pnas.89.14.6304.
9
Crystal structure of the FliF-FliG complex from yields insight into the assembly of the motor MS-C ring in the bacterial flagellum.
J Biol Chem. 2018 Feb 9;293(6):2066-2078. doi: 10.1074/jbc.M117.797936. Epub 2017 Dec 11.

引用本文的文献

1
Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in .
Microorganisms. 2022 Mar 12;10(3):608. doi: 10.3390/microorganisms10030608.
3
Structural Basis of the Subcellular Topology Landscape of .
Front Microbiol. 2019 Jul 24;10:1670. doi: 10.3389/fmicb.2019.01670. eCollection 2019.
4
Crystal structure of the FliF-FliG complex from yields insight into the assembly of the motor MS-C ring in the bacterial flagellum.
J Biol Chem. 2018 Feb 9;293(6):2066-2078. doi: 10.1074/jbc.M117.797936. Epub 2017 Dec 11.
6
Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
Structure. 2017 Feb 7;25(2):317-328. doi: 10.1016/j.str.2016.12.006. Epub 2017 Jan 12.
7
Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography.
J Bacteriol. 2017 Feb;199(3):e00695-16. doi: 10.1128/JB.00695-16. Epub 2016 Nov 14.
8
Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus.
J Bacteriol. 2015 Jan 1;197(1):63-72. doi: 10.1128/JB.02271-14. Epub 2014 Oct 13.
9
Novel components of the flagellar system in epsilonproteobacteria.
mBio. 2014 Jun 24;5(3):e01349-14. doi: 10.1128/mBio.01349-14.
10
Molecular architecture of the bacterial flagellar motor in cells.
Biochemistry. 2014 Jul 15;53(27):4323-33. doi: 10.1021/bi500059y. Epub 2014 Jul 1.

本文引用的文献

1
BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP.
Bacteriol Rev. 1964 Sep;28(3):231-95. doi: 10.1128/br.28.3.231-295.1964.
2
Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus.
Mol Microbiol. 2001 Jul;41(1):117-30. doi: 10.1046/j.1365-2958.2001.02506.x.
4
Deletion analysis of the flagellar switch protein FliG of Salmonella.
J Bacteriol. 2000 Jun;182(11):3022-8. doi: 10.1128/JB.182.11.3022-3028.2000.
5
Overproduced Salmonella typhimurium flagellar motor switch complexes.
J Mol Biol. 2000 May 12;298(4):577-83. doi: 10.1006/jmbi.2000.3703.
6
Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
FEMS Microbiol Rev. 2000 Apr;24(2):177-91. doi: 10.1016/S0168-6445(99)00035-2.
7
The bacterial flagellum: reversible rotary propellor and type III export apparatus.
J Bacteriol. 1999 Dec;181(23):7149-53. doi: 10.1128/JB.181.23.7149-7153.1999.
8
Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator.
Mol Microbiol. 1999 Apr;32(2):379-91. doi: 10.1046/j.1365-2958.1999.01358.x.
9
Components of the Salmonella flagellar export apparatus and classification of export substrates.
J Bacteriol. 1999 Mar;181(5):1388-94. doi: 10.1128/JB.181.5.1388-1394.1999.
10
An essential protease involved in bacterial cell-cycle control.
EMBO J. 1998 Oct 1;17(19):5658-69. doi: 10.1093/emboj/17.19.5658.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验