Aertsens Marc, De Cannière Pierre, Moors Hugo
SCK.CEN, Boeretang 200, B-2400 Mol, Belgium.
J Contam Hydrol. 2003 Mar;61(1-4):117-29. doi: 10.1016/S0169-7722(02)00140-7.
A mathematical model describing the dissolution of nuclear glass directly disposed in clay combines a first-order dissolution rate law with the diffusion of dissolved silica in clay. According to this model, the main parameters describing the long-term dissolution of the glass are etaR, the product of the diffusion accessible porosity eta and the retardation factor R, and the apparent diffusion coefficient D(app) of dissolved silica in clay. For determining the migration parameters needed for long-term predictions, four Through-Diffusion (T-D) experiments and one percolation test have been performed on undisturbed clay cores. In the Through-Diffusion experiments, the concentration decrease after injection of 32Si (radioactive labelled silica) was measured in the inlet compartment. At the end of the T-D experiments, the clay cores were cut in thin slices and the activity of labelled silica in each slice was determined. The measured activity profiles for these four clay cores are well reproducible. Since no labelled silica could be detected in the outlet compartments, the Through-Diffusion experiments are fitted by two In-Diffusion models: one model assuming linear and reversible sorption equilibrium and a second model taking into account sorption kinetics. Although the kinetic model provides better fits, due to the sufficiently long duration of the experiments, both models give approximately similar values for the fit parameters. The single percolation test leads to an apparent diffusion coefficient value about two to three times lower than those of the Through-Diffusion tests. Therefore, dissolved silica appears to be strongly retarded in Boom Clay. A retardation factor R between 100 and 300 was determined. The corresponding in situ distribution coefficient K(d) is in the range 25-75 cm(3) g(-1). The apparent diffusion coefficient of dissolved silica in Boom Clay is estimated between 2 x 10(-13) and 7 x 10(-13) m(2) s(-1). The pore diffusion coefficient is in the range from 6 x 10(-11) to 1 x 10(-10) m(2) s(-1).
一个描述直接置于黏土中的核废料玻璃溶解过程的数学模型,将一级溶解速率定律与溶解二氧化硅在黏土中的扩散相结合。根据该模型,描述玻璃长期溶解的主要参数是ηR,即扩散可及孔隙率η与阻滞因子R的乘积,以及溶解二氧化硅在黏土中的表观扩散系数D(app)。为了确定长期预测所需的迁移参数,对未扰动的黏土岩芯进行了四项通扩散(T-D)实验和一项渗流试验。在通扩散实验中,测量了注入32Si(放射性标记二氧化硅)后入口隔室中的浓度降低情况。在T-D实验结束时,将黏土岩芯切成薄片,并测定每片中标记二氧化硅的活度。这四个黏土岩芯的测量活度剖面具有良好的可重复性。由于在出口隔室中未检测到标记二氧化硅,因此通扩散实验由两个内扩散模型拟合:一个模型假设线性和可逆吸附平衡,另一个模型考虑吸附动力学。尽管动力学模型拟合效果更好,但由于实验持续时间足够长,两个模型给出的拟合参数值大致相似。单次渗流试验得到的表观扩散系数值比通扩散试验低约两到三倍。因此,溶解二氧化硅在 Boom 黏土中似乎受到强烈阻滞。确定了阻滞因子R在100至300之间。相应的原位分配系数K(d)在25 - 75 cm³ g⁻¹范围内。溶解二氧化硅在 Boom 黏土中的表观扩散系数估计在2×10⁻¹³至7×10⁻¹³ m² s⁻¹之间。孔隙扩散系数在6×10⁻¹¹至1×10⁻¹⁰ m² s⁻¹范围内。