Department of Chemistry, Duke University, Durham, NC 27708.
Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2116180119.
A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.
发展高效传递自旋极化电流的分子导线是一项关键的自旋电子学挑战。手性双核配体在高度共轭分子导线上产生的面内扭转扭曲,导致了大的近红外旋转强度。电偶极矩和磁偶极矩的标量积([Formula: see text])很大,这在手性分子导线的低能吸收子集中显而易见,这使得增强的手性诱导自旋选择衍生的自旋极化成为可能。磁导原子力显微镜实验和自旋霍尔器件表明,这些设计为在手性材料中实现高自旋选择性和大自旋电流指明了方向。