Silverman William R, Roux Benoît, Papazian Diane M
Department of Physiology and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2935-40. doi: 10.1073/pnas.0636603100. Epub 2003 Feb 26.
The structure of the voltage sensor and the detailed physical basis of voltage-dependent activation in ion channels have not been determined. We now have identified conserved molecular rearrangements underlying two major voltage-dependent conformational changes during activation of divergent K(+) channels, ether-à-go-go (eag) and Shaker. Two conserved arginines of the S4 voltage sensor move sequentially into an extracellular gating pocket, where they interact with an acidic residue in S2. In eag, these transitions are modulated by a divalent ion that binds in the gating pocket. Conservation of key molecular details in the activation mechanism confirms that voltage sensors in divergent K(+) channels share a common structure. Molecular modeling reveals that structural constraints derived from eag and Shaker specify the unique packing arrangement of transmembrane segments S2, S3, and S4 within the voltage sensor.
电压传感器的结构以及离子通道中电压依赖性激活的详细物理基础尚未确定。我们现已确定了在不同的钾离子通道(如快速激活延迟整流钾通道(eag)和震荡器通道(Shaker))激活过程中,两个主要电压依赖性构象变化背后的保守分子重排。电压传感器S4段的两个保守精氨酸依次移入细胞外门控口袋,在那里它们与S2段中的一个酸性残基相互作用。在eag通道中,这些转变由结合在门控口袋中的二价离子调节。激活机制中关键分子细节的保守性证实,不同钾离子通道中的电压传感器具有共同的结构。分子建模显示,源自eag和Shaker通道的结构限制决定了电压传感器内跨膜片段S2、S3和S4的独特堆积排列。