Suppr超能文献

跨膜片段之间的静电相互作用介导了Shaker钾通道亚基的折叠。

Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.

作者信息

Tiwari-Woodruff S K, Schulteis C T, Mock A F, Papazian D M

机构信息

Department of Physiology, School of Medicine, University of California, Los Angeles 90095-1751, USA.

出版信息

Biophys J. 1997 Apr;72(4):1489-500. doi: 10.1016/S0006-3495(97)78797-6.

Abstract

In voltage-dependent Shaker K+ channels, charged residues E293 in transmembrane segment S2 and R365, R368, and R371 in S4 contribute significantly to the gating charge movement that accompanies activation. Using an intragenic suppression strategy, we have now probed for structural interaction between transmembrane segments S2, S3, and S4 in Shaker channels. Charge reversal mutations of E283 in S2 and K374 in S4 disrupt maturation of the protein. Maturation was specifically and efficiently rescued by second-site charge reversal mutations, indicating that electrostatic interactions exist between E283 in S2 and R368 and R371 in S4, and between K374 in S4 and E293 in S2 and D316 in S3. Rescued subunits were incorporated into functional channels, demonstrating that a native structure was restored. Our data indicate that K374 interacts with E293 and D316 within the same subunit. These electrostatic interactions mediate the proper folding of the protein and are likely to persist in the native structure. Our results raise the possibility that the S4 segment is tilted relative to S2 and S3 in the voltage-sensing domain of Shaker channels. Such an arrangement might provide solvent access to voltage-sensing residues, which we find to be highly tolerant of mutations.

摘要

在电压依赖性的Shaker钾通道中,跨膜片段S2中的带电荷残基E293以及S4中的R365、R368和R371对伴随激活的门控电荷移动有显著贡献。利用基因内抑制策略,我们现在探究了Shaker通道中跨膜片段S2、S3和S4之间的结构相互作用。S2中的E283和S4中的K374的电荷反转突变会破坏蛋白质的成熟。通过第二位点电荷反转突变可特异性且有效地挽救成熟过程,这表明S2中的E283与S4中的R368和R371之间,以及S4中的K374与S2中的E293和S3中的D316之间存在静电相互作用。挽救后的亚基被整合到功能性通道中,表明恢复了天然结构。我们的数据表明K374在同一亚基内与E293和D316相互作用。这些静电相互作用介导了蛋白质的正确折叠,并且可能在天然结构中持续存在。我们的结果提出了一种可能性,即在Shaker通道的电压感应结构域中,S4片段相对于S2和S3是倾斜的。这样的排列可能为电压感应残基提供溶剂可及性,我们发现这些残基对突变具有高度耐受性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1a9/1184345/c6e557e7fc18/biophysj00037-0007-a.jpg

相似文献

1
Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.
Biophys J. 1997 Apr;72(4):1489-500. doi: 10.1016/S0006-3495(97)78797-6.
2
Structural organization of the voltage sensor in voltage-dependent potassium channels.
Novartis Found Symp. 2002;245:178-90; discussion 190-2, 261-4.
3
Electrostatic interactions of S4 voltage sensor in Shaker K+ channel.
Neuron. 1995 Jun;14(6):1293-301. doi: 10.1016/0896-6273(95)90276-7.
4
Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1159-67. doi: 10.1016/s0896-6273(00)80142-7.
5
Amino acid substitution within the S2 and S4 transmembrane segments in Shaker potassium channel modulates channel gating.
Biochem Biophys Res Commun. 2000 Sep 7;275(3):720-4. doi: 10.1006/bbrc.2000.3369.
6
Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8263-8. doi: 10.1073/pnas.0611007104. Epub 2007 May 8.
7
Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel.
J Gen Physiol. 2001 May;117(5):469-90. doi: 10.1085/jgp.117.5.469.
9
Voltage-dependent structural interactions in the Shaker K(+) channel.
J Gen Physiol. 2000 Feb;115(2):123-38. doi: 10.1085/jgp.115.2.123.
10

引用本文的文献

1
Fifty years of gating currents and channel gating.
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313380. Epub 2023 Jul 6.
2
Regulating Kv channel clustering by hetero-oligomerization.
Front Mol Biosci. 2023 Jan 9;9:1050942. doi: 10.3389/fmolb.2022.1050942. eCollection 2022.
3
An epilepsy-associated K1.2 charge-transfer-center mutation impairs K1.2 and K1.4 trafficking.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2113675119. doi: 10.1073/pnas.2113675119. Epub 2022 Apr 19.
4
Analysis of an electrostatic mechanism for ΔpH dependent gating of the voltage-gated proton channel, H1, supports a contribution of protons to gating charge.
Biochim Biophys Acta Bioenerg. 2021 Nov 1;1862(11):148480. doi: 10.1016/j.bbabio.2021.148480. Epub 2021 Aug 5.
5
Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel.
Insect Biochem Mol Biol. 2021 Oct;137:103625. doi: 10.1016/j.ibmb.2021.103625. Epub 2021 Aug 3.
6
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
7
Voltage-dependent gating in K channels: experimental results and quantitative models.
Pflugers Arch. 2020 Jan;472(1):27-47. doi: 10.1007/s00424-019-02336-6. Epub 2019 Dec 20.
8
Genetic intolerance analysis as a tool for protein science.
Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183058. doi: 10.1016/j.bbamem.2019.183058. Epub 2019 Sep 5.
9
Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K channels.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8203-8208. doi: 10.1073/pnas.1806578115. Epub 2018 Jul 23.
10
Voltage and pH sensing by the voltage-gated proton channel, H1.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2018.0108.

本文引用的文献

2
Transmembrane movement of the shaker K+ channel S4.
Neuron. 1996 Feb;16(2):387-97. doi: 10.1016/s0896-6273(00)80056-2.
3
Roles of electrostatic interaction in proteins.
Q Rev Biophys. 1996 Feb;29(1):1-90. doi: 10.1017/s0033583500005746.
5
Contribution of the S4 segment to gating charge in the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1169-77. doi: 10.1016/s0896-6273(00)80143-9.
6
Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1159-67. doi: 10.1016/s0896-6273(00)80142-7.
7
Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes.
Biochemistry. 1996 May 28;35(21):6828-38. doi: 10.1021/bi952988t.
9
Importance of two buried salt bridges in the stability and folding pathway of barnase.
Biochemistry. 1996 May 28;35(21):6786-94. doi: 10.1021/bi952930e.
10
Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
Biochemistry. 1996 May 21;35(20):6443-9. doi: 10.1021/bi960171+.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验