Tiwari-Woodruff S K, Schulteis C T, Mock A F, Papazian D M
Department of Physiology, School of Medicine, University of California, Los Angeles 90095-1751, USA.
Biophys J. 1997 Apr;72(4):1489-500. doi: 10.1016/S0006-3495(97)78797-6.
In voltage-dependent Shaker K+ channels, charged residues E293 in transmembrane segment S2 and R365, R368, and R371 in S4 contribute significantly to the gating charge movement that accompanies activation. Using an intragenic suppression strategy, we have now probed for structural interaction between transmembrane segments S2, S3, and S4 in Shaker channels. Charge reversal mutations of E283 in S2 and K374 in S4 disrupt maturation of the protein. Maturation was specifically and efficiently rescued by second-site charge reversal mutations, indicating that electrostatic interactions exist between E283 in S2 and R368 and R371 in S4, and between K374 in S4 and E293 in S2 and D316 in S3. Rescued subunits were incorporated into functional channels, demonstrating that a native structure was restored. Our data indicate that K374 interacts with E293 and D316 within the same subunit. These electrostatic interactions mediate the proper folding of the protein and are likely to persist in the native structure. Our results raise the possibility that the S4 segment is tilted relative to S2 and S3 in the voltage-sensing domain of Shaker channels. Such an arrangement might provide solvent access to voltage-sensing residues, which we find to be highly tolerant of mutations.
在电压依赖性的Shaker钾通道中,跨膜片段S2中的带电荷残基E293以及S4中的R365、R368和R371对伴随激活的门控电荷移动有显著贡献。利用基因内抑制策略,我们现在探究了Shaker通道中跨膜片段S2、S3和S4之间的结构相互作用。S2中的E283和S4中的K374的电荷反转突变会破坏蛋白质的成熟。通过第二位点电荷反转突变可特异性且有效地挽救成熟过程,这表明S2中的E283与S4中的R368和R371之间,以及S4中的K374与S2中的E293和S3中的D316之间存在静电相互作用。挽救后的亚基被整合到功能性通道中,表明恢复了天然结构。我们的数据表明K374在同一亚基内与E293和D316相互作用。这些静电相互作用介导了蛋白质的正确折叠,并且可能在天然结构中持续存在。我们的结果提出了一种可能性,即在Shaker通道的电压感应结构域中,S4片段相对于S2和S3是倾斜的。这样的排列可能为电压感应残基提供溶剂可及性,我们发现这些残基对突变具有高度耐受性。