Suppr超能文献

非水溶剂中的蛋白质结构与动力学:分子动力学模拟研究的见解

Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies.

作者信息

Soares Cláudio M, Teixeira Vitor H, Baptista António M

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal.

出版信息

Biophys J. 2003 Mar;84(3):1628-41. doi: 10.1016/S0006-3495(03)74972-8.

Abstract

Protein structure and dynamics in nonaqueous solvents are here investigated using molecular dynamics simulation studies, by considering two model proteins (ubiquitin and cutinase) in hexane, under varying hydration conditions. Ionization of the protein groups is treated assuming "pH memory," i.e., using the ionization states characteristic of aqueous solution. Neutralization of charged groups by counterions is done by considering a counterion for each charged group that cannot be made neutral by establishing a salt bridge with another charged group; this treatment is more physically reasonable for the nonaqueous situation, contrasting with the usual procedures. Our studies show that hydration has a profound effect on protein stability and flexibility in nonaqueous solvents. The structure becomes more nativelike with increasing values of hydration, up to a certain point, when further increases render it unstable and unfolding starts to occur. There is an optimal amount of water, approximately 10% (w/w), where the protein structure and flexibility are closer to the ones found in aqueous solution. This behavior can explain the experimentally known bell-shaped dependence of enzyme catalysis on hydration, and the molecular reasons for it are examined here. Water and counterions play a fundamental and dynamic role on protein stabilization, but they also seem to be important for protein unfolding at high percentages of bound water.

摘要

本文通过分子动力学模拟研究,在不同水合条件下,考察了两种模型蛋白(泛素和角质酶)在己烷中的蛋白质结构和动力学。假设存在“pH记忆”,即使用水溶液特有的电离状态来处理蛋白质基团的电离。对于不能通过与另一个带电基团形成盐桥而中和的每个带电基团,通过考虑一个抗衡离子来实现带电基团的中和;与通常的程序相比,这种处理对于非水情况更符合物理实际。我们的研究表明,水合作用对非水溶剂中蛋白质的稳定性和柔韧性有深远影响。随着水合值的增加,结构变得更接近天然状态,直到达到某一点,此时进一步增加水合会使其不稳定并开始发生解折叠。存在一个最佳水量,约为10%(w/w),此时蛋白质结构和柔韧性更接近在水溶液中发现的情况。这种行为可以解释实验中已知的酶催化对水合作用的钟形依赖性,本文将研究其分子原因。水和抗衡离子对蛋白质稳定起着基本且动态的作用,但它们在高结合水百分比下对蛋白质解折叠似乎也很重要。

相似文献

2
Water dependent properties of cutinase in nonaqueous solvents: a computational study of enantioselectivity.
Biophys J. 2005 Aug;89(2):999-1008. doi: 10.1529/biophysj.105.063297. Epub 2005 May 27.
3
Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents.
FEBS J. 2007 May;274(9):2424-36. doi: 10.1111/j.1742-4658.2007.05781.x.
4
Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
Biophys J. 2004 Aug;87(2):812-21. doi: 10.1529/biophysj.104.041269.
5
Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies.
J Phys Chem B. 2008 Mar 6;112(9):2566-72. doi: 10.1021/jp0766050. Epub 2008 Feb 12.
7
Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation.
J Phys Chem B. 2012 Mar 1;116(8):2575-85. doi: 10.1021/jp211054u. Epub 2012 Feb 22.
9
A novel pathway to enzyme deactivation: the cutinase model.
Biotechnol Bioeng. 2003 Jun 30;82(7):851-7. doi: 10.1002/bit.10641.
10
The role of dynamics in enzyme activity.
Annu Rev Biophys Biomol Struct. 2003;32:69-92. doi: 10.1146/annurev.biophys.32.110601.142445. Epub 2002 Dec 2.

引用本文的文献

1
A Computational Perspective to Intermolecular Interactions and the Role of the Solvent on Regulating Protein Properties.
Chem Rev. 2025 Aug 13;125(15):7023-7056. doi: 10.1021/acs.chemrev.4c00807. Epub 2025 Jul 28.
2
Exploring Protein Aggregation in Biological Products: From Mechanistic Understanding to Practical Solutions.
AAPS PharmSciTech. 2025 Jul 8;26(6):189. doi: 10.1208/s12249-025-03189-2.
4
Utilization of Fusarium Solani lipase for enrichment of polyunsaturated Omega-3 fatty acids.
Braz J Microbiol. 2024 Sep;55(3):2211-2226. doi: 10.1007/s42770-024-01411-0. Epub 2024 Jun 14.
5
Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding.
Glob Chall. 2023 May 2;7(7):2300022. doi: 10.1002/gch2.202300022. eCollection 2023 Jul.
6
SARS-CoV-2 Variants, RBD Mutations, Binding Affinity, and Antibody Escape.
Int J Mol Sci. 2021 Nov 9;22(22):12114. doi: 10.3390/ijms222212114.
7
Entropy-Enthalpy Compensations Fold Proteins in Precise Ways.
Int J Mol Sci. 2021 Sep 6;22(17):9653. doi: 10.3390/ijms22179653.
8
Influence of water availability and temperature on estimates of microbial extracellular enzyme activity.
PeerJ. 2021 Mar 3;9:e10994. doi: 10.7717/peerj.10994. eCollection 2021.
10
Protein Stability in Titan's Subsurface Water Ocean.
Astrobiology. 2020 Feb;20(2):190-198. doi: 10.1089/ast.2018.1972. Epub 2019 Nov 15.

本文引用的文献

1
On the pH memory of lyophilized compounds containing protein functional groups.
Biotechnol Bioeng. 1997 Feb 5;53(3):345-8. doi: 10.1002/(SICI)1097-0290(19970205)53:3<345::AID-BIT14>3.0.CO;2-J.
2
Solvent effects on the catalytic activity of subtilisin suspended in compressed gases.
Biotechnol Bioeng. 1996 Feb 20;49(4):399-404. doi: 10.1002/(SICI)1097-0290(19960220)49:4<399::AID-BIT6>3.0.CO;2-K.
3
Measuring enzyme hydration in nonpolar organic solvents using NMR.
Biotechnol Bioeng. 1995 Jun 5;46(5):452-8. doi: 10.1002/bit.260460509.
4
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
5
Nativelike enzyme properties are important for optimum activity in neat organic solvents.
J Am Chem Soc. 2001 Jun 6;123(22):5380-1. doi: 10.1021/ja015889d.
7
Improving enzymes by using them in organic solvents.
Nature. 2001 Jan 11;409(6817):241-6. doi: 10.1038/35051719.
9
Acid-base control for biocatalysis in organic media: new solid-state proton/cation buffers and an indicator.
Chemistry. 2000 Jun 2;6(11):1923-9. doi: 10.1002/1521-3765(20000602)6:11<1923::aid-chem1923>3.0.co;2-t.
10
Biocatalysis in low-water media: understanding effects of reaction conditions.
Curr Opin Chem Biol. 2000 Feb;4(1):74-80. doi: 10.1016/s1367-5931(99)00055-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验