Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DTU, 2800 Kongens Lyngby, Denmark.
J Phys Chem B. 2012 Mar 1;116(8):2575-85. doi: 10.1021/jp211054u. Epub 2012 Feb 22.
In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method relies on determining the water content of the bulk phase and uses a combination of Kirkwood-Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents methanol, tert-butyl alcohol, methyl tert-butyl ether, and hexane, each mixture at five different water activities. It is shown that similar water activity yields similar enzyme hydration in the different solvents. However, both solvent and water activity are shown to have profound effects on enzyme structure and flexibility.
在非水酶学中,通常通过固定介质的热力学水活度来控制酶的水合作用。在这项工作中,我们提出了一种在水/有机溶剂混合物中评估蛋白质分子动力学模拟中水活度的策略。该方法依赖于确定本体相的含水量,并结合 Kirkwood-Buff 理论和自由能计算来确定相应的活度系数。我们将该方法应用于在纯水中以及有机溶剂甲醇、叔丁醇、甲基叔丁基醚和正己烷中进行的南极假丝酵母脂肪酶 B 的分子动力学研究中,每种溶剂混合物的水活度为五个不同的值。结果表明,相似的水活度会导致不同溶剂中酶的相似水合作用。然而,溶剂和水活度都会对酶的结构和灵活性产生深远影响。