Suppr超能文献

荧光相关光谱的统计分析:标准偏差与偏差

Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias.

作者信息

Saffarian Saveez, Elson Elliot L

机构信息

Department of Physics, Washington University, St Louis, Missouri 63110, USA.

出版信息

Biophys J. 2003 Mar;84(3):2030-42. doi: 10.1016/S0006-3495(03)75011-5.

Abstract

We present a detailed statistical analysis of fluorescence correlation spectroscopy for a wide range of timescales. The derivation is completely analytical and can provide an excellent tool for planning and analysis of FCS experiments. The dependence of the signal-to-noise ratio on different measurement conditions is extensively studied. We find that in addition to the shot noise and the noise associated with correlated molecular dynamics there is another source of noise that appears at very large lag times. We call this the "particle noise," as its behavior is governed by the number of particles that have entered and left the laser beam sample volume during large dwell times. The standard deviations of all the points on the correlation function are calculated analytically and shown to be in good agreement with experiments. We have also investigated the bias associated with experimental correlation function measurements. A "phase diagram" for FCS experiments is constructed that demonstrates the significance of the bias for any given experiment. We demonstrate that the value of the bias can be calculated and added back as a first-order correction to the experimental correlation function.

摘要

我们对广泛时间尺度范围内的荧光相关光谱进行了详细的统计分析。推导过程完全是解析性的,可为荧光相关光谱实验的规划和分析提供一个出色的工具。我们广泛研究了信噪比在不同测量条件下的依赖性。我们发现,除了散粒噪声和与相关分子动力学相关的噪声外,在非常长的延迟时间还存在另一种噪声源。我们将其称为“粒子噪声”,因为其行为受在长驻留时间内进入和离开激光束样品体积的粒子数量支配。通过解析计算得到相关函数上所有点的标准差,并证明其与实验结果高度吻合。我们还研究了与实验相关函数测量相关的偏差。构建了一个荧光相关光谱实验的“相图”,它展示了任何给定实验中偏差的重要性。我们证明偏差值可以计算出来,并作为对实验相关函数的一阶校正加回去。

相似文献

1
Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias.
Biophys J. 2003 Mar;84(3):2030-42. doi: 10.1016/S0006-3495(03)75011-5.
2
Adaptive optics for fluorescence correlation spectroscopy.
Opt Express. 2011 Dec 19;19(27):26839-49. doi: 10.1364/OE.19.026839.
3
High-pressure fluorescence correlation spectroscopy.
Biophys J. 2003 Oct;85(4):2711-9. doi: 10.1016/S0006-3495(03)74694-3.
4
On the statistics of fluorescence correlation spectroscopy.
Biophys Chem. 1990 Oct;38(1-2):49-57. doi: 10.1016/0301-4622(90)80039-a.
5
Fluorescence correlation spectroscopy close to a fluctuating membrane.
Biophys J. 2003 Mar;84(3):2005-20. doi: 10.1016/S0006-3495(03)75009-7.
6
Numerical fluorescence correlation spectroscopy for the analysis of molecular dynamics under nonstandard conditions.
Anal Chem. 2007 Jun 1;79(11):4031-9. doi: 10.1021/ac062013m. Epub 2007 Apr 21.
7
Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis.
Biophys J. 2007 Mar 15;92(6):2184-98. doi: 10.1529/biophysj.106.093591. Epub 2006 Dec 22.
10
10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas.
Opt Express. 2008 Dec 8;16(25):20597-602. doi: 10.1364/oe.16.020597.

引用本文的文献

1
Keystone bacteria dynamics in chronic obstructive pulmonary disease (COPD): Towards differential diagnosis and probiotic candidates.
Heliyon. 2025 Feb 14;11(4):e42719. doi: 10.1016/j.heliyon.2025.e42719. eCollection 2025 Feb 28.
2
Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts.
Biophys J. 2024 Mar 19;123(6):745-755. doi: 10.1016/j.bpj.2024.02.012. Epub 2024 Feb 20.
4
Statistical analysis of the autocorrelation function in fluorescence correlation spectroscopy.
Biophys J. 2024 Mar 19;123(6):667-680. doi: 10.1016/j.bpj.2024.01.011. Epub 2024 Jan 12.
5
Chemically-powered swimming and diffusion in the microscopic world.
Nat Rev Chem. 2021 Jul;5(7):500-510. doi: 10.1038/s41570-021-00281-6. Epub 2021 May 27.
6
Autocorrelation function of finite-length data in fluorescence correlation spectroscopy.
Biophys J. 2023 Jan 3;122(1):241-253. doi: 10.1016/j.bpj.2022.10.027. Epub 2022 Oct 20.
7
Fluorescence Correlation Spectroscopy and Phase Separation.
Methods Mol Biol. 2023;2563:161-198. doi: 10.1007/978-1-0716-2663-4_8.
9
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.
10
Number and Brightness Analysis: Visualization of Protein Oligomeric State in Living Cells.
Adv Exp Med Biol. 2021;1310:31-58. doi: 10.1007/978-981-33-6064-8_2.

本文引用的文献

1
The standard deviation in fluorescence correlation spectroscopy.
Biophys J. 2001 Jun;80(6):2987-99. doi: 10.1016/S0006-3495(01)76264-9.
2
Noise on Fluorescence Correlation Spectroscopy.
J Colloid Interface Sci. 2001 Jan 1;233(1):50-55. doi: 10.1006/jcis.2000.7229.
5
Fluorescence correlation spectroscopy: diagnostics for sparse molecules.
Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11753-7. doi: 10.1073/pnas.94.22.11753.
6
Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology.
J Biotechnol. 1995 Jul 31;41(2-3):177-86. doi: 10.1016/0168-1656(95)00054-t.
7
Fluorescence correlation spectroscopy. II. An experimental realization.
Biopolymers. 1974 Jan;13(1):29-61. doi: 10.1002/bip.1974.360130103.
8
Two-photon laser scanning fluorescence microscopy.
Science. 1990 Apr 6;248(4951):73-6. doi: 10.1126/science.2321027.
9
On the statistics of fluorescence correlation spectroscopy.
Biophys Chem. 1990 Oct;38(1-2):49-57. doi: 10.1016/0301-4622(90)80039-a.
10
Studies on the structure of actin gels using time correlation spectroscopy of fluorescent beads.
Biophys J. 1992 Oct;63(4):1000-10. doi: 10.1016/S0006-3495(92)81686-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验