Suppr超能文献

利用贝叶斯非参数方法逐光子进行单焦点共聚焦数据分析。

Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.

作者信息

Tavakoli Meysam, Jazani Sina, Sgouralis Ioannis, Shafraz Omer M, Sivasankar Sanjeevi, Donaphon Bryan, Levitus Marcia, Pressé Steve

机构信息

Department of Physics, Indiana University-Purdue University Indianapolis, IN 46202.

Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287.

出版信息

Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.

Abstract

Fluorescence time traces are used to report on dynamical properties of molecules. The basic unit of information in these traces is the arrival time of individual photons, which carry instantaneous information from the molecule, from which they are emitted, to the detector on timescales as fast as microseconds. Thus, it is theoretically possible to monitor molecular dynamics at such timescales from traces containing only a sufficient number of photon arrivals. In practice, however, traces are stochastic and in order to deduce dynamical information through traditional means-such as fluorescence correlation spectroscopy (FCS) and related techniques-they are collected and temporally autocorrelated over several minutes. So far, it has been impossible to analyze dynamical properties of molecules on timescales approaching data acquisition without collecting long traces under the strong assumption of stationarity of the process under observation or assumptions required for the analytic derivation of a correlation function. To avoid these assumptions, we would otherwise need to estimate the instantaneous number of molecules emitting photons and their positions within the confocal volume. As the number of molecules in a typical experiment is unknown, this problem demands that we abandon the conventional analysis paradigm. Here, we exploit Bayesian nonparametrics that allow us to obtain, in a principled fashion, estimates of the same quantities as FCS but from the direct analysis of traces of photon arrivals that are significantly smaller in size, or total duration, than those required by FCS.

摘要

荧光时间轨迹用于报告分子的动力学性质。这些轨迹中的基本信息单元是单个光子的到达时间,光子从发射它们的分子携带即时信息,以微秒级的速度传输到探测器。因此,从仅包含足够数量光子到达的轨迹中,理论上有可能在这样的时间尺度上监测分子动力学。然而,在实际中,轨迹是随机的,为了通过传统方法(如荧光相关光谱法(FCS)及相关技术)推断动力学信息,需要在几分钟内收集并进行时间自相关分析。到目前为止,在不收集长时间轨迹的情况下,若不基于观测过程平稳性的强假设或相关函数解析推导所需的假设,就不可能在接近数据采集的时间尺度上分析分子的动力学性质。为避免这些假设,我们否则需要估计发射光子的分子的瞬时数量及其在共焦体积内的位置。由于典型实验中分子的数量未知,这个问题要求我们摒弃传统的分析范式。在此,我们利用贝叶斯非参数方法,使我们能够以一种有原则的方式,获得与FCS相同数量的估计值,但直接分析的光子到达轨迹在大小或总持续时间上比FCS所需的轨迹小得多。

相似文献

3
Single-Molecule Reaction-Diffusion.单分子反应扩散
bioRxiv. 2023 Sep 6:2023.09.05.556378. doi: 10.1101/2023.09.05.556378.

引用本文的文献

7
An accurate probabilistic step finder for time-series analysis.一种用于时间序列分析的精确概率步长查找器。
Biophys J. 2024 Sep 3;123(17):2749-2764. doi: 10.1016/j.bpj.2024.01.008. Epub 2024 Jan 9.
10
Monte Carlo samplers for efficient network inference.蒙特卡罗采样器在网络推断中的高效应用。
PLoS Comput Biol. 2023 Jul 18;19(7):e1011256. doi: 10.1371/journal.pcbi.1011256. eCollection 2023 Jul.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验