Haralampus-Grynaviski Nicole M, Lamb Laura E, Clancy Christine M R, Skumatz Christine, Burke Janice M, Sarna Tadeusz, Simon John D
Department of Chemistry, Duke University, Durham, NC 27708, USA.
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3179-84. doi: 10.1073/pnas.0630280100. Epub 2003 Feb 28.
The emission properties of ocular lipofuscin granules isolated from human retinal pigment epithelial cells are examined by using steady-state fluorescence spectroscopy and spectrally resolved confocal microscopy. The shape of the emission spectrum of a thick sample of lipofuscin granules dried on glass varies with excitation energy. The polarization of this emission is wavelength-dependent, exhibiting significant polarization near the excitation wavelength and becoming mostly depolarized over the majority of the emission spectrum. These results show that the yellow-emitting fluorophores [e.g., A2E (2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium)] are excited as a result of energy transfer within the granules and therefore are not the dominant blue-absorbing chromophores within lipofuscin granules. Atomic force microscopy images show lipofuscin granules to be an aggregated structure. Bulk and in vivo emission measurements must therefore take into account the effect of Raleigh scattering. When corrected for scattering, the emission spectrum of a thick lipofuscin deposit or intracellular lipofuscin resembles that for A2E. The sum of the emission spectra of a collection of individual granules also resembles the emission spectrum of A2E, but the spectrum of individual granules varies significantly. This result suggests that the agreement between the emission spectra of lipofuscin and A2E is fortuitous, and the collective data indicate the presence of several blue-absorbing chromophores in lipofuscin and show A2E is not the dominant yellow-emitting fluorophore in many of the granules studied.
利用稳态荧光光谱和光谱分辨共聚焦显微镜,对从人视网膜色素上皮细胞中分离出的眼脂褐素颗粒的发射特性进行了研究。在玻璃上干燥的脂褐素颗粒厚样品的发射光谱形状随激发能量而变化。这种发射的偏振与波长有关,在激发波长附近呈现出显著的偏振,并且在发射光谱的大部分区域大部分变为去偏振。这些结果表明,发射黄色荧光的荧光团[例如A2E(2-[2,6-二甲基-8-(2,6,6-三甲基-1-环己烯-1-基)-1E,3E,5E,7E-辛四烯基]-1-(2-羟乙基)-4-[4-甲基-6-(2,6,6-三甲基-1-环己烯-1-基)-1E,3E,5E-己三烯基]-吡啶鎓)]是由于颗粒内的能量转移而被激发的,因此不是脂褐素颗粒内主要的吸收蓝光的发色团。原子力显微镜图像显示脂褐素颗粒是一种聚集结构。因此,大量和体内发射测量必须考虑瑞利散射的影响。校正散射后,厚脂褐素沉积物或细胞内脂褐素的发射光谱类似于A2E的发射光谱。单个颗粒集合的发射光谱之和也类似于A2E的发射光谱,但单个颗粒的光谱变化很大。这一结果表明脂褐素和A2E发射光谱之间的一致性是偶然的,总体数据表明脂褐素中存在几种吸收蓝光的发色团,并表明在许多研究的颗粒中A2E不是主要的发射黄色荧光的荧光团。