Suppr超能文献

枯草芽孢杆菌中二硫键应激的全局表征

Global characterization of disulfide stress in Bacillus subtilis.

作者信息

Leichert Lars Ingo Ole, Scharf Christian, Hecker Michael

机构信息

Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany.

出版信息

J Bacteriol. 2003 Mar;185(6):1967-75. doi: 10.1128/JB.185.6.1967-1975.2003.

Abstract

We used DNA macroarray and proteome analysis to analyze the regulatory networks in Bacillus subtilis that are affected by disulfide stress. To induce disulfide stress, we used the specific thiol oxidant diamide. After addition of 1 mM diamide to an exponentially growing culture, cell growth stopped until the medium was cleared of diamide. Global analysis of the mRNA expression pattern during growth arrest revealed 350 genes that were induced by disulfide stress by greater than threefold. Strongly induced genes included known oxidative stress genes that are under the control of the global repressor PerR and heat shock genes controlled by the global repressor CtsR. Other genes that were strongly induced encode putative regulators of gene expression and proteins protecting against toxic elements and heavy metals. Many genes were substantially repressed by disulfide stress, among them most of the genes belonging to the negative stringent response. Two-dimensional gels of radioactively labeled protein extracts allowed us to visualize and quantitate the massive changes in the protein expression pattern that occurred in response to disulfide stress. The observed dramatic alteration in the protein pattern reflected the changes found in the transcriptome experiments. The response to disulfide stress seems to be a complex combination of different regulatory networks, indicating that redox-sensing cysteines play a key role in different signaling pathways sensing oxidative stress, heat stress, toxic element stress, and growth inhibition.

摘要

我们使用DNA宏阵列和蛋白质组分析来研究枯草芽孢杆菌中受二硫键应激影响的调控网络。为了诱导二硫键应激,我们使用了特定的硫醇氧化剂二酰胺。向指数生长期的培养物中添加1 mM二酰胺后,细胞生长停止,直到培养基中的二酰胺被清除。对生长停滞期间mRNA表达模式的全局分析显示,有350个基因被二硫键应激诱导超过三倍。强烈诱导的基因包括受全局阻遏物PerR控制的已知氧化应激基因和受全局阻遏物CtsR控制的热休克基因。其他被强烈诱导的基因编码假定的基因表达调节因子以及抵御有毒元素和重金属的蛋白质。许多基因被二硫键应激显著抑制,其中大部分属于负严紧反应的基因。放射性标记蛋白质提取物的二维凝胶电泳使我们能够可视化和定量二硫键应激反应中蛋白质表达模式的大量变化。观察到的蛋白质模式的显著改变反映了转录组实验中发现的变化。对二硫键应激的反应似乎是不同调控网络的复杂组合,这表明氧化还原敏感的半胱氨酸在感知氧化应激、热应激、有毒元素应激和生长抑制的不同信号通路中起关键作用。

相似文献

1
Global characterization of disulfide stress in Bacillus subtilis.
J Bacteriol. 2003 Mar;185(6):1967-75. doi: 10.1128/JB.185.6.1967-1975.2003.
3
S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.
Mol Cell Proteomics. 2011 Nov;10(11):M111.009506. doi: 10.1074/mcp.M111.009506. Epub 2011 Jul 11.
4
CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria.
Mol Microbiol. 2011 Feb;79(3):772-85. doi: 10.1111/j.1365-2958.2010.07489.x. Epub 2011 Jan 5.
5
Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress.
J Bacteriol. 2007 Mar;189(5):1727-35. doi: 10.1128/JB.01519-06. Epub 2006 Dec 8.
6
Proteome analysis in the study of the bacterial heat-shock response.
Mass Spectrom Rev. 2002 Jul-Aug;21(4):244-65. doi: 10.1002/mas.10031.
8
Global transcriptional response of Bacillus subtilis to heat shock.
J Bacteriol. 2001 Dec;183(24):7318-28. doi: 10.1128/JB.183.24.7318-7328.2001.

引用本文的文献

1
Phosphorylation State Dictates Bacterial Stressosome Assembly and Function.
Res Sq. 2025 May 30:rs.3.rs-6735924. doi: 10.21203/rs.3.rs-6735924/v1.
3
8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in .
Antioxidants (Basel). 2024 Mar 8;13(3):332. doi: 10.3390/antiox13030332.
5
Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells.
Antioxidants (Basel). 2023 Jun 7;12(6):1236. doi: 10.3390/antiox12061236.
6
The Thioredoxin System in Contributes to Oxidative Stress Tolerance, Motility, and Virulence.
Microorganisms. 2023 Mar 24;11(4):827. doi: 10.3390/microorganisms11040827.
7
Deciphering the Proteomic Landscape of in Response to Acid and Oxidative Stresses.
ACS Omega. 2022 Jul 18;7(30):26749-26766. doi: 10.1021/acsomega.2c03092. eCollection 2022 Aug 2.
8
THOR's Hammer: the Antibiotic Koreenceine Drives Gene Expression in a Model Microbial Community.
mBio. 2022 Jun 28;13(3):e0248621. doi: 10.1128/mbio.02486-21. Epub 2022 Apr 18.
9
Update on the Protein Homeostasis Network in .
Front Microbiol. 2022 Mar 8;13:865141. doi: 10.3389/fmicb.2022.865141. eCollection 2022.
10
Elemental Sulfur Inhibits Yeast Growth via Producing Toxic Sulfide and Causing Disulfide Stress.
Antioxidants (Basel). 2022 Mar 17;11(3):576. doi: 10.3390/antiox11030576.

本文引用的文献

1
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
2
Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model.
Mol Microbiol. 2002 Jul;45(2):289-306. doi: 10.1046/j.1365-2958.2002.03001.x.
3
All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8506-11. doi: 10.1073/pnas.132142799. Epub 2002 Jun 18.
5
Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd(2+) ion resistance.
FEMS Microbiol Lett. 2002 Feb 19;208(1):105-9. doi: 10.1111/j.1574-6968.2002.tb11068.x.
6
Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon.
Mol Microbiol. 2001 Nov;42(4):1007-20. doi: 10.1046/j.1365-2958.2001.02675.x.
7
A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis.
Electrophoresis. 2001 Aug;22(14):2908-35. doi: 10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M.
8
Global analysis of the general stress response of Bacillus subtilis.
J Bacteriol. 2001 Oct;183(19):5617-31. doi: 10.1128/JB.183.19.5617-5631.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验