Long Timothy E, Naidu Surya Teja, Hissom Emily G, Meka Yogesh, Chavva Hasitha, Brown Kathleen C, Valentine Meagan E, Fan Jun, Denvir James, Primerano Donald A, Yu Hongwei D, Valentovic Monica A
Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV, USA.
Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
Sci Rep. 2025 May 5;15(1):15658. doi: 10.1038/s41598-025-00078-3.
Disulfiram (Antabuse) is a prescription alcohol sobriety aid that has shown repurposing potential as an antibacterial drug for infections due to Gram-positive bacteria. In this investigation, we sought to define the principal mechanisms that disulfiram operates as a growth inhibitor of Staphylococcus aureus using differential transcriptomic, metabolomic, bioenergetic, and phenotypic growth analyses. The RNA-seq transcriptome analysis revealed that disulfiram induces oxidative stress, redox imbalance, metal acquisition, and the biosynthesis of pantothenate, coenzyme A, thiamine, menaquinone, siderophores/metallophores, and bacillithiol. The metabolomic analysis indicated that disulfiram depletes coenzyme A and attenuates the catabolism of glucose, pyruvate, and NADH. Conversely, disulfiram appeared to up-regulate arginine catabolism for ATP production and accelerate citrate consumption that was attributed to induction of siderophore biosynthesis (i.e., staphyloferrin). The bioenergetic studies further revealed that the primary metabolite of disulfiram (i.e., diethyldithiocarbamate) is likely involved in the mechanism of action as an inhibitor of oxidative phosphorylation and chelating agent of iron and other metals. In the final analysis, disulfiram inhibits the growth of S. aureus by inducing perturbations in central glucose catabolism and redox imbalance (e.g., oxidative stress). Moreover, the chelation of metal ions and antagonism of the respiratory chain by diethyldithiocarbamate are believed to contribute to the inhibition of cell replication.
双硫仑(戒酒硫)是一种处方戒酒辅助药物,已显示出作为抗革兰氏阳性菌感染抗菌药物的重新利用潜力。在本研究中,我们试图通过差异转录组学、代谢组学、生物能量学和表型生长分析来确定双硫仑作为金黄色葡萄球菌生长抑制剂的主要作用机制。RNA测序转录组分析表明,双硫仑可诱导氧化应激、氧化还原失衡、金属摄取以及泛酸、辅酶A、硫胺素、甲萘醌、铁载体/金属载体和杆菌硫醇的生物合成。代谢组学分析表明,双硫仑会消耗辅酶A,并减弱葡萄糖、丙酮酸和NADH的分解代谢。相反,双硫仑似乎上调精氨酸分解代谢以产生ATP,并加速柠檬酸盐消耗,这归因于铁载体生物合成(即葡萄球菌铁载体)的诱导。生物能量学研究进一步表明,双硫仑的主要代谢产物(即二乙二硫代氨基甲酸盐)可能作为氧化磷酸化抑制剂和铁及其他金属的螯合剂参与作用机制。归根结底,双硫仑通过诱导中心葡萄糖分解代谢紊乱和氧化还原失衡(如氧化应激)来抑制金黄色葡萄球菌的生长。此外,二乙二硫代氨基甲酸盐对金属离子的螯合作用和对呼吸链的拮抗作用被认为有助于抑制细胞复制。