Suppr超能文献

酵母Yap1p核输出信号的调控是由氧化还原信号诱导的可逆二硫键形成介导的。

Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation.

作者信息

Kuge S, Arita M, Murayama A, Maeta K, Izawa S, Inoue Y, Nomoto A

机构信息

Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033, Japan.

出版信息

Mol Cell Biol. 2001 Sep;21(18):6139-50. doi: 10.1128/MCB.21.18.6139-6150.2001.

Abstract

Yap1p, a crucial transcription factor in the oxidative stress response of Saccharomyces cerevisiae, is transported in and out of the nucleus under nonstress conditions. The nuclear export step is specifically inhibited by H(2)O(2) or the thiol oxidant diamide, resulting in Yap1p nuclear accumulation and induction of transcription of its target genes. Here we provide evidence for sensing of H(2)O(2) and diamide mediated by disulfide bond formation in the C-terminal cysteine-rich region (c-CRD), which contains 3 conserved cysteines and the nuclear export signal (NES). The H(2)O(2) or diamide-induced oxidation of the c-CRD in vivo correlates with induced Yap1p nuclear localization. Both were initiated within 1 min of application of oxidative stress, before the intracellular redox status of thioredoxin and glutathione was affected. The cysteine residues in the middle region of Yap1p (n-CRD) are required for prolonged nuclear localization of Yap1p in response to H(2)O(2) and are thus also required for maximum transcriptional activity. Using mass spectrometry analysis, the H(2)O(2)-induced oxidation of the c-CRD in vitro was detected as an intramolecular disulfide linkage between the first (Cys(598)) and second (Cys(620)) cysteine residues; this linkage could be reduced by thioredoxin. In contrast, diamide induced each pair of disulfide linkage in the c-CRD, but in this case the cysteine residues in the n-CRD appeared to be dispensable for the response. Our data provide evidence for molecular mechanisms of redox signal sensing through the thiol-disulfide redox cycle coupled with the thioredoxin system in the Yap1p NES.

摘要

Yap1p是酿酒酵母氧化应激反应中的关键转录因子,在非应激条件下可进出细胞核。核输出步骤受到过氧化氢(H₂O₂)或硫醇氧化剂二酰胺的特异性抑制,导致Yap1p在细胞核中积累并诱导其靶基因转录。在此,我们提供证据表明,在富含半胱氨酸的C端区域(c-CRD)中通过二硫键形成介导了对H₂O₂和二酰胺的感知,该区域包含3个保守的半胱氨酸和核输出信号(NES)。体内c-CRD的H₂O₂或二酰胺诱导的氧化与诱导的Yap1p核定位相关。两者均在施加氧化应激的1分钟内启动,早于硫氧还蛋白和谷胱甘肽的细胞内氧化还原状态受到影响之前。Yap1p中间区域(n-CRD)的半胱氨酸残基是Yap1p响应H₂O₂而长时间定位于细胞核所必需的,因此也是最大转录活性所必需的。通过质谱分析,体外检测到c-CRD的H₂O₂诱导的氧化是第一个(Cys⁵⁹⁸)和第二个(Cys⁶²⁰)半胱氨酸残基之间的分子内二硫键连接;这种连接可被硫氧还蛋白还原。相比之下,二酰胺诱导c-CRD中的每对二硫键连接,但在这种情况下,n-CRD中的半胱氨酸残基似乎对该反应是可有可无的。我们的数据为通过硫醇-二硫键氧化还原循环与Yap1p NES中的硫氧还蛋白系统耦合的氧化还原信号传感的分子机制提供了证据。

相似文献

2
Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization.
J Biol Chem. 2005 Dec 9;280(49):40524-33. doi: 10.1074/jbc.M504716200. Epub 2005 Oct 11.
3
Yap1p activates gene transcription in an oxidant-specific fashion.
Mol Cell Biol. 1999 Dec;19(12):8302-13. doi: 10.1128/MCB.19.12.8302.
6
Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor.
EMBO J. 1998 Dec 15;17(24):7416-29. doi: 10.1093/emboj/17.24.7416.
9
Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae.
Mol Microbiol. 2001 Feb;39(3):595-605. doi: 10.1046/j.1365-2958.2001.02255.x.
10
H2O2 sensing through oxidation of the Yap1 transcription factor.
EMBO J. 2000 Oct 2;19(19):5157-66. doi: 10.1093/emboj/19.19.5157.

引用本文的文献

1
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
2
Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro.
Nucleic Acids Res. 2024 Mar 21;52(5):2546-2564. doi: 10.1093/nar/gkad1258.
3
Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase.
PLoS One. 2023 Nov 22;18(11):e0294571. doi: 10.1371/journal.pone.0294571. eCollection 2023.
4
Yap1-mediated Flr1 expression reveals crosstalk between oxidative stress signaling and caffeine resistance in .
Front Microbiol. 2022 Nov 23;13:1026780. doi: 10.3389/fmicb.2022.1026780. eCollection 2022.
5
Oxidative stress response pathways in fungi.
Cell Mol Life Sci. 2022 Jun 1;79(6):333. doi: 10.1007/s00018-022-04353-8.
7
TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis.
Biochim Biophys Acta Mol Cell Res. 2021 Aug;1868(9):119073. doi: 10.1016/j.bbamcr.2021.119073. Epub 2021 May 29.
8
How Microbes Defend Themselves From Incoming Hydrogen Peroxide.
Front Immunol. 2021 Apr 27;12:667343. doi: 10.3389/fimmu.2021.667343. eCollection 2021.
9
Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities.
Front Oncol. 2021 Apr 27;11:650256. doi: 10.3389/fonc.2021.650256. eCollection 2021.
10
Effects of Non-Thermal Plasma on Yeast .
Int J Mol Sci. 2021 Feb 24;22(5):2247. doi: 10.3390/ijms22052247.

本文引用的文献

2
Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae.
Mol Microbiol. 2001 Feb;39(3):595-605. doi: 10.1046/j.1365-2958.2001.02255.x.
4
H2O2 sensing through oxidation of the Yap1 transcription factor.
EMBO J. 2000 Oct 2;19(19):5157-66. doi: 10.1093/emboj/19.19.5157.
6
Redox sensing by prokaryotic transcription factors.
Biochem Pharmacol. 2000 Jan 1;59(1):1-6. doi: 10.1016/s0006-2952(99)00289-0.
7
Yap1p activates gene transcription in an oxidant-specific fashion.
Mol Cell Biol. 1999 Dec;19(12):8302-13. doi: 10.1128/MCB.19.12.8302.
9
Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status.
Proc Natl Acad Sci U S A. 1999 May 25;96(11):6161-5. doi: 10.1073/pnas.96.11.6161.
10
Chaperone activity with a redox switch.
Cell. 1999 Feb 5;96(3):341-52. doi: 10.1016/s0092-8674(00)80547-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验