Suppr超能文献

Chlamydia pneumoniae survival in macrophages is regulated by free Ca2+ dependent reactive nitrogen and oxygen species.

作者信息

Azenabor A A, Chaudhry A U

机构信息

Department of Health Sciences, University of Wisconsin, Milwaukee, WI 53211, USA.

出版信息

J Infect. 2003 Feb;46(2):120-8. doi: 10.1053/jinf.2002.1098.

Abstract

OBJECTIVES

Despite an efficient macrophage immune capability, Chlamydia pneumoniae infects host cells and causes chronic diseases. To gain better insights into C. pneumoniae survival mechanisms in macrophages, its growth in regular RAW-264.7 cells (nitric oxide sufficient NO (+)) and RAW-264.7 cells (nitric oxide insufficient NO (-)) were studied.

METHODS

Role of Ca(2+), NO and reactive oxygen species (ROS) during C. pneumoniae infection in macrophages were determined.

RESULTS

RAW-264.7 NO (-) cells supported significantly Chlamydia growth, showing an upregulation of ROS, superoxide dismutase (SOD) and catalase activities as compared with RAW-264.7 NO (+) cell. Ascorbic acid, inducible nitric oxide synthase inhibitor and glutathione significantly prompted Chlamydia inclusion formation. Cytosolic Ca(2+) had regulatory effect on organism growth, NO generation, SOD and catalase activities in both cell types.

CONCLUSIONS

These findings suggest that minimal Ca(2+) signaling in macrophages at early stages of infection, NO and ROS release have modulatory effects onC. pneumoniae survival, onset of persistence and chronicity, processes which are needed for the initiation of diseases in which C. pneumoniae has been implicated as a possible etiologic agent.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验