Suppr超能文献

使用贝叶斯隐马尔可夫模型和马尔可夫链蒙特卡罗方法检测四分类群DNA序列比对中的重组情况。

Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo.

作者信息

Husmeier Dirk, McGuire Gráinne

机构信息

Biomathematics and Statistics Scotland, JCMB, King's Buildings, Edinburgh, United Kingdom.

出版信息

Mol Biol Evol. 2003 Mar;20(3):315-37. doi: 10.1093/molbev/msg039.

Abstract

This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.

摘要

本文提出了一种用于检测DNA序列比对中重组的统计方法,该方法基于结合两种概率图形模型:(1)表示分类单元之间关系的分类单元图(系统发育树),以及(2)表示DNA序列比对中不同位点之间相互作用的位点图(隐马尔可夫模型)。我们采用贝叶斯方法,使用Metropolis-Hastings和Gibbs-within-Gibbs方案,通过马尔可夫链蒙特卡罗从后验分布中对模型参数进行采样。所提出的方法在各种合成和真实世界的DNA序列比对上进行了测试,并且我们将其性能与已确立的检测方法RECPARS、PLATO和TOPAL以及两种替代参数估计方案进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验