Husmeier Dirk, McGuire Gráinne
Biomathematics and Statistics Scotland, JCMB, King's Buildings, Edinburgh, United Kingdom.
Mol Biol Evol. 2003 Mar;20(3):315-37. doi: 10.1093/molbev/msg039.
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.
本文提出了一种用于检测DNA序列比对中重组的统计方法,该方法基于结合两种概率图形模型:(1)表示分类单元之间关系的分类单元图(系统发育树),以及(2)表示DNA序列比对中不同位点之间相互作用的位点图(隐马尔可夫模型)。我们采用贝叶斯方法,使用Metropolis-Hastings和Gibbs-within-Gibbs方案,通过马尔可夫链蒙特卡罗从后验分布中对模型参数进行采样。所提出的方法在各种合成和真实世界的DNA序列比对上进行了测试,并且我们将其性能与已确立的检测方法RECPARS、PLATO和TOPAL以及两种替代参数估计方案进行了比较。