Suppr超能文献

用于预测肝细胞癌根治性切除术后早期肝内复发的寡核苷酸微阵列

Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.

作者信息

Iizuka Norio, Oka Masaaki, Yamada-Okabe Hisafumi, Nishida Minekatsu, Maeda Yoshitaka, Mori Naohide, Takao Takashi, Tamesa Takao, Tangoku Akira, Tabuchi Hisahiro, Hamada Kenji, Nakayama Hironobu, Ishitsuka Hideo, Miyamoto Takanobu, Hirabayashi Akira, Uchimura Shunji, Hamamoto Yoshihiko

机构信息

Department of Bioregulatory Function, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan.

出版信息

Lancet. 2003 Mar 15;361(9361):923-9. doi: 10.1016/S0140-6736(03)12775-4.

Abstract

BACKGROUND

Hepatocellular carcinoma has a poor prognosis because of the high intrahepatic recurrence rate. There are technological limitations to traditional methods such as TNM staging for accurate prediction of recurrence, suggesting that new techniques are needed.

METHODS

We investigated mRNA expression profiles in tissue specimens from a training set, comprising 33 patients with hepatocellular carcinoma, with high-density oligonucleotide microarrays representing about 6000 genes. We used this training set in a supervised learning manner to construct a predictive system, consisting of 12 genes, with the Fisher linear classifier. We then compared the predictive performance of our system with that of a predictive system with a support vector machine (SVM-based system) on a blinded set of samples from 27 newly enrolled patients.

FINDINGS

Early intrahepatic recurrence within 1 year after curative surgery occurred in 12 (36%) and eight (30%) patients in the training and blinded sets, respectively. Our system correctly predicted early intrahepatic recurrence or non-recurrence in 25 (93%) of 27 samples in the blinded set and had a positive predictive value of 88% and a negative predictive value of 95%. By contrast, the SVM-based system predicted early intrahepatic recurrence or non-recurrence correctly in only 16 (60%) individuals in the blinded set, and the result yielded a positive predictive value of only 38% and a negative predictive value of 79%.

INTERPRETATION

Our system predicted early intrahepatic recurrence or non-recurrence for patients with hepatocellular carcinoma much more accurately than the SVM-based system, suggesting that our system could serve as a new method for characterising the metastatic potential of hepatocellular carcinoma.

摘要

背景

由于肝内复发率高,肝细胞癌的预后较差。传统方法如TNM分期在准确预测复发方面存在技术局限性,这表明需要新技术。

方法

我们使用代表约6000个基因的高密度寡核苷酸微阵列,研究了来自一个训练集的组织标本中的mRNA表达谱,该训练集包括33例肝细胞癌患者。我们以监督学习的方式使用这个训练集,通过Fisher线性分类器构建了一个由12个基因组成的预测系统。然后,我们将我们系统的预测性能与基于支持向量机的预测系统(SVM系统)在来自27例新入组患者的一组盲法样本上的预测性能进行了比较。

结果

在训练集和盲法集中,分别有12例(36%)和8例(30%)患者在根治性手术后1年内发生早期肝内复发。我们的系统在盲法集中27个样本中的25个(93%)中正确预测了早期肝内复发或未复发,阳性预测值为88%,阴性预测值为95%。相比之下,基于SVM的系统在盲法集中仅16例(60%)个体中正确预测了早期肝内复发或未复发,阳性预测值仅为38%,阴性预测值为79%。

解读

我们的系统比基于SVM的系统能更准确地预测肝细胞癌患者的早期肝内复发或未复发,这表明我们的系统可作为一种表征肝细胞癌转移潜能的新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验