Milev Stoyan, Gorfe Alemayehu A, Karshikoff Andrey, Clubb Robert T, Bosshard Hans Rudolf, Jelesarov Ilian
Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190m Room 44 L42, CH-8057 Zürich, Switzerland.
Biochemistry. 2003 Apr 1;42(12):3492-502. doi: 10.1021/bi026936x.
Sequence-specific DNA recognition by bacterial integrase Tn916 involves structural rearrangements of both the protein and the DNA duplex. Energetic contributions from changes of conformation, thermal motions and soft vibrational modi of the protein, the DNA, and the complex significantly influence the energetic profile of protein-DNA association. Understanding the energetics of such a complicated system requires not only a detailed calorimetric investigation of the association reaction but also of the components in isolation. Here we report on the conformational stability of the integrase Tn916 DNA binding domain and its cognate 13 base pair target DNA duplex. Using a combination of temperature and denaturant induced unfolding experiments, we find that the 74-residue DNA binding domain is compact and unfolds cooperatively with only small deviation from two-state behavior. Scanning calorimetry reveals an increase of the heat capacity of the native protein attributable to increased thermal fluctuations. From the combined calorimetric and spectroscopic experiments, the parameters of protein unfolding are T(m) = 43.8 +/- 0.3 degrees C, DeltaH(m) = 255 +/- 18 kJ mol(-1), DeltaS(m) = 0.80 +/- 0.06 kJ mol(-1), and DeltaC(p) = 5.0 +/- 0.8 kJ K(-1) mol(-1). The DNA target duplex displays a thermodynamic signature typical of short oligonucleotide duplexes: significant heat absorption due to end fraying and twisting precedes cooperative unfolding and dissociation. The parameters for DNA unfolding and dissociation are DeltaH(m) = 335 +/- 4 kJ mol(-1) and DeltaC(p) = 2.7 +/- 0.9 kJ K(-(1) mol(-1). The results reported here have been instrumental in interpreting the thermodynamic features of the association reaction of the integrase with its 13 base pair target DNA duplex reported in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3481-3491].
细菌整合酶Tn916对序列特异性DNA的识别涉及蛋白质和DNA双链体的结构重排。蛋白质、DNA及其复合物的构象变化、热运动和软振动模式所产生的能量贡献,会显著影响蛋白质-DNA结合的能量分布。要理解这样一个复杂系统的能量学,不仅需要对结合反应进行详细的量热研究,还需要对各个组分进行单独研究。在此,我们报告整合酶Tn916的DNA结合结构域及其同源13碱基对靶DNA双链体的构象稳定性。通过结合温度和变性剂诱导的解折叠实验,我们发现这个由74个残基组成的DNA结合结构域结构紧密,以协同方式解折叠,与两态行为仅有微小偏差。扫描量热法显示,天然蛋白质的热容增加,这归因于热涨落的增强。综合量热和光谱实验结果,蛋白质解折叠的参数为:T(m)=43.8±0.3℃,ΔH(m)=255±18 kJ mol(-1),ΔS(m)=0.80±0.06 kJ mol(-1),以及ΔC(p)=5.0±0.8 kJ K(-1) mol(-1)。DNA靶双链体呈现出短寡核苷酸双链体典型的热力学特征:在协同解折叠和解离之前,由于末端松散和扭曲会有显著的吸热现象。DNA解折叠和解离的参数为:ΔH(m)=335±4 kJ mol(-1)和ΔC(p)=2.7±0.9 kJ K(-(1) mol(-1)。本文所报道的结果有助于解释随附论文[Milev等人(2003年),《生物化学》42卷,3481 - 3491页]中整合酶与其13碱基对靶DNA双链体结合反应的热力学特征。