Suppr超能文献

Inhibitory effect of delta-tocotrienol, a HMG CoA reductase inhibitor, on monocyte-endothelial cell adhesion.

作者信息

Chao Jun-Tzu, Gapor Abdul, Theriault Andre

机构信息

Division of Medical Technology, University of Hawaii at Manoa, 1960 East-West Road, Bio C-206, Honolulu, Hawaii 96822, USA.

出版信息

J Nutr Sci Vitaminol (Tokyo). 2002 Oct;48(5):332-7. doi: 10.3177/jnsv.48.332.

Abstract

We have previously shown that alpha-tocotrienol (alpha-T3), a vitamin E analogue and HMG CoA reductase (HMGR) inhibitor, markedly inhibited monocyte-endothelial cell adhesion, a process that was reversed with the addition of mevalonate intermediates involved in protein prenylation. Since delta-T3 and gamma-T3 possess greater HMGR inhibition than alpha-T3, we postulated that these analogues might have a greater effect on protein prenylation, and thus on monocyte adhesion and endothelial adhesion molecule expression in comparison to alpha-T3. Hence, we pursued to investigate the effect of various analogues of tocotrienol (alpha, gamma, delta) on monocytic cell adhesion and expression of adhesion molecules using a human umbilical vein endothelial cell-line, EA.hy926, as the model system. Relative to alpha-T3, delta-T3 displayed a more profound inhibitory effect on monocytic cell adherence using a 15 micromol/L concentration within 24 h (delta: 42 +/- 5%; alpha: 26 +/- 8% vs. control). This inhibitory action was reversed by co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of monocyte adhesion. To further evaluate the effect of tocotrienols on the vascular endothelium, we measured the surface expression of adhesion molecules. Compared to alpha-T3, delta-T3 markedly inhibited the expression of VCAM-1 (delta: 57 +/- 6%; alpha: 37 +/- 10% vs. control) and E-selection (delta: 36 +/- 3%; alpha: 18 +/- 6% vs. control) in TNF-alpha activated endothelial cells. The above result suggests that delta-T3 is a potent and effective agent for the reduction of cellular adhesion molecule expression and monocytic cell adherence.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验