Allen Bradley S, Veluz Jeffrey S, Buckberg Gerald D, Aeberhard Ernesto, Ignarro Louis J
Division of Cardiovascular Surgery, University of California at Los Angeles Medical Center, USA.
J Thorac Cardiovasc Surg. 2003 Mar;125(3):625-32. doi: 10.1067/mtc.2003.96.
We sought to determine whether damage after deep hypothermic circulatory arrest can be diminished by changing pump prime components when reinstituting cardiopulmonary bypass.
Fifteen piglets (2-3 months old) were cooled to 19 degrees C by using the alpha-stat pH strategy. Five were cooled and rewarmed without ischemia (control animals), and the other 10 piglets underwent 90 minutes of deep hypothermic circulatory arrest. Of these, 5 were rewarmed and reperfused without altering the cardiopulmonary bypass circuit blood prime. In the other 5 animals, the bypass blood prime was modified (leukocyte depleted, hypocalcemic, hypermagnesemic, pH-stat, normoxic, mannitol, and an Na(+)/H(+) exchange inhibitor) during circulatory arrest before starting warm reperfusion. Oxidant injury was assessed on the basis of conjugated dienes, vascular changes on the basis of endothelin levels, myocardial function on the basis of cardiac output and dopamine need, lung injury on the basis of pulmonary vascular resistance and oxygenation, and cellular damage on the basis of release of creatine kinase and aspartate aminotransferase. Neurologic assessment (score 0, normal; score 500, brain death) was done 6 hours after discontinuing cardiopulmonary bypass.
Compared with animals undergoing cardiopulmonary bypass without ischemia (control animals), deep hypothermic circulatory arrest without modification of the reperfusate produced an oxidant injury (conjugated dienes increased 0.78 vs 1.71 absorbance (Abs) 240 nmol/L per 0.5 mL, P <.001 vs control animals), depressed cardiac output (6.0 vs 4.0 L/min, P <.05 vs control subjects), prolonged dopamine need (P <.001 vs control subjects), elevated pulmonary vascular resistance (74% vs 197%, P <.05 vs control subjects), reduced oxygenation (P <.01 vs control subjects), increased neurologic injury (56 vs 244, P <.001 vs control subjects), and increased release of creatine kinase (2695 vs 6974 U/L, P <.05 vs control subjects), aspartate aminotransferase (144 vs 229 U/L), and endothelin (1.02 vs 2.56 pg/mL, P <.001 vs control subjects). Conversely, the oxidant injury was markedly limited (conjugated dienes of 0.85 +/- 0.09 Abs 240 nmol/L per 0.5 mL, P <.001 vs unmodified pump prime) with modification of cardiopulmonary bypass prime, resulting in increased cardiac output (5.1 +/- 0.8 L/min), minimal dopamine need (P <.001 vs unmodified pump prime), no increase in pulmonary vascular resistance (44% +/- 31%, P <.01 vs unmodified pump prime) or endothelin levels (0.64 +/- 0.15 pg/mL, P <.001 vs unmodified pump prime), complete recovery of oxygenation (P <.01 vs unmodified pump prime), reduced neurologic damage (144 +/- 33, P <.05 vs unmodified pump prime), and lower release of aspartate aminotransferase (124 +/- 23 U/L, P <.05 vs unmodified pump prime) and creatine kinase (3366 +/- 918, P <.05 vs unmodified pump prime).
A global reperfusion injury after deep hypothermic circulatory arrest was identified and changed. The injury is mediated by oxygen-derived free radicals, resulting in organ and endothelial dysfunction. Modification of global organ and endothelial damage is achieved by modifying the blood prime in the cardiopulmonary bypass circuit to deliver a controlled global reperfusate when reinstituting bypass.
我们试图确定在重新建立体外循环时改变泵预充成分是否能减轻深低温停循环后的损伤。
15只仔猪(2 - 3月龄)采用α-稳态pH策略冷却至19℃。5只仔猪在无缺血情况下进行冷却和复温(对照动物),另外10只仔猪经历90分钟的深低温停循环。其中,5只在不改变体外循环回路血液预充的情况下进行复温和再灌注。另外5只动物在开始温血再灌注前的停循环期间对旁路血液预充进行了改良(去除白细胞、低钙、高镁、pH稳态、常氧、甘露醇以及一种钠/氢交换抑制剂)。基于共轭二烯评估氧化损伤,基于内皮素水平评估血管变化,基于心输出量和多巴胺需求量评估心肌功能,基于肺血管阻力和氧合评估肺损伤,基于肌酸激酶和天冬氨酸转氨酶的释放评估细胞损伤。在停止体外循环6小时后进行神经学评估(评分0,正常;评分500,脑死亡)。
与未经历缺血的体外循环动物(对照动物)相比,未改变再灌注液的深低温停循环导致氧化损伤(共轭二烯每0.5 mL吸光度在240 nmol/L时从0.78增加至1.71,与对照动物相比P <.001)、心输出量降低(6.0 vs 4.0 L/min,与对照受试者相比P <.05)、多巴胺需求时间延长(与对照受试者相比P <.001)、肺血管阻力升高(74% vs 197%,与对照受试者相比P <.05)、氧合降低(与对照受试者相比P <.01)、神经损伤增加(56 vs 244,与对照动物相比P <.001)以及肌酸激酶释放增加(2695 vs 6974 U/L,与对照动物相比P <.05)、天冬氨酸转氨酶(144 vs 229 U/L)和内皮素(1.02 vs 2.56 pg/mL,与对照动物相比P <.001)。相反,改良体外循环预充可显著限制氧化损伤(共轭二烯为每0.5 mL 0.85±0.09吸光度240 nmol/L,与未改良泵预充相比P <.001),从而使心输出量增加(5.1±0.8 L/min)、多巴胺需求最小化(与未改良泵预充相比P <.001)、肺血管阻力或内皮素水平无增加(44%±31%,与未改良泵预充相比P <.01)(0.64±0.15 pg/mL,与未改良泵预充相比P <.001)、氧合完全恢复(与未改良泵预充相比P <.01)、神经损伤减轻(144±33,与未改良泵预充相比P <.05)以及天冬氨酸转氨酶(124±23 U/L,与未改良泵预充相比P <.05)和肌酸激酶(3366±918,与未改良泵预充相比P <.05)释放降低。
识别并改变了深低温停循环后的全身性再灌注损伤。该损伤由氧衍生的自由基介导,导致器官和内皮功能障碍。通过改良体外循环回路中的血液预充,在重新建立旁路时提供可控的全身性再灌注液,可实现对全身性器官和内皮损伤的改良。