Suppr超能文献

急诊科计算机化患者主诉的综合征分析:生物恐怖主义和流感监测的契机。

Syndromic analysis of computerized emergency department patients' chief complaints: an opportunity for bioterrorism and influenza surveillance.

作者信息

Irvin Charlene Babcock, Nouhan Patricia Petrella, Rice Kimberly

机构信息

Department of Emergency Medicine, St. John Hospital and Medical Center, Detroit, MI, USA.

出版信息

Ann Emerg Med. 2003 Apr;41(4):447-52. doi: 10.1067/mem.2003.104.

Abstract

STUDY OBJECTIVE

Emergency department computerized triage logs might be useful for automated ED surveillance and potentially for early identification of bioterrorism events. We describe a Web-based surveillance program and its feasibility for surveillance.

METHODS

A Web-based surveillance program that receives computerized chief complaint data daily from a large academic urban teaching hospital and performs syndromic analysis on these data was developed. On the basis of preset limits, the Web-based surveillance program sends an alert e-mail message when the syndromic analysis reveals an increase in the number of patients in predefined symptom groups. The feasibility of this system was tested by using historical data during an influenza outbreak (December 1999 to January 2000) and applying the anthrax symptom group.

RESULTS

The Web-based surveillance program identified the influenza outbreak in the first week.

CONCLUSION

Computerized triage logs might be a feasible method for bioterrorism and influenza surveillance. The Web-based nature of the surveillance program creates the opportunity for other hospitals to contribute data, potentially resulting in an automated network of ED computerized triage log surveillance.

摘要

研究目的

急诊科计算机分诊记录可能有助于急诊科的自动监测,并有可能用于早期识别生物恐怖主义事件。我们描述了一个基于网络的监测程序及其用于监测的可行性。

方法

开发了一个基于网络的监测程序,该程序每天从一家大型学术性城市教学医院接收计算机化的主诉数据,并对这些数据进行症状分析。基于预设的限值,当症状分析显示预定义症状组中的患者数量增加时,基于网络的监测程序会发送警报电子邮件。通过在流感爆发期间(1999年12月至2000年1月)使用历史数据并应用炭疽症状组来测试该系统的可行性。

结果

基于网络的监测程序在第一周就识别出了流感爆发。

结论

计算机分诊记录可能是用于生物恐怖主义和流感监测的一种可行方法。监测程序基于网络的特性为其他医院提供了贡献数据的机会,有可能形成一个急诊科计算机分诊记录监测的自动化网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验