Suppr超能文献

平流层臭氧消耗导致的对流层成分和空气质量变化。

Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

作者信息

Solomon Keith R, Tang Xiaoyan, Wilson Stephen R, Zanis Prodromos, Bais Alkiviadis F

机构信息

Centre for Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada.

出版信息

Photochem Photobiol Sci. 2003 Jan;2(1):62-7. doi: 10.1039/b211086e.

Abstract

Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the chemical composition of the atmosphere including aerosols will also have an impact. For example, tropospheric OH is the 'cleaning' agent of the troposphere. While increased UV-B increases the OH concentration, increases in concentration of gases like methane, carbon monoxide and volatile organic compounds will act as sinks for OH in troposphere and hence change air quality and chemical composition in the troposphere. Also, changes in the aerosol content of the atmosphere resulting from global climate change may affect ozone photolysis rate coefficients and hence reduce or increase tropospheric ozone concentrations.

摘要

平流层臭氧损耗导致到达地面的紫外线B(UV-B)辐射增加,进而使低层大气(对流层)的化学活性增强。与已受空气污染地区人为产生的臭氧相比,平流层臭氧损耗对对流层臭氧的影响较小(尽管很显著)。建模和实验研究表明,平流层臭氧损耗对对流层臭氧的影响在不同高度和不同化学条件下有所不同。因此,在污染地区,平流层臭氧损耗导致的臭氧增加量可能更大。预计只有在本地排放贡献较小的地区,才会出现可归因于平流层臭氧损耗的浓度变化。氮氧化物(NO + NO2)的垂直分布、挥发性有机化合物的排放以及水汽含量都是重要的影响因素。平流层臭氧损耗具有长期性,这意味着对流层臭氧浓度即使小幅增加,也可能对人类健康和环境产生重大影响。三氟乙酸(TFA)和氯二氟乙酸(CDFA)是由氢氯氟烃(HCFCs)和氢氟烃(HFCs)在大气中降解产生的。已在雨、河流、湖泊和海洋中检测到TFA,这些水体是这些化合物及相关化合物的最终归宿。除了HCFCs和HFCs降解外,还确定了TFA的重要人为来源。现场条件下的毒性测试表明,目前由HFCs和HCFCs大气降解产生的TFA和CDFA浓度对人类健康和环境不构成风险。臭氧损耗与未来气候变化之间相互作用的影响很复杂,是当前研究的一个重要领域。对于空气质量和对流层成分而言,一系列物理参数(如温度、云量和大气传输)将改变UV-B的影响。包括气溶胶在内的大气化学成分变化也会产生影响。例如,对流层中的羟基自由基(OH)是对流层的“清洁剂”。虽然UV-B增加会使OH浓度升高,但甲烷、一氧化碳和挥发性有机化合物等气体浓度增加会成为对流层中OH的汇,从而改变对流层的空气质量和化学成分。此外,全球气候变化导致的大气气溶胶含量变化可能会影响臭氧光解速率系数,进而降低或增加对流层臭氧浓度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验