Suppr超能文献

感觉神经元中额外的峰电位形成以及传入峰电位模式的破坏。

Extra spike formation in sensory neurons and the disruption of afferent spike patterning.

作者信息

Amir Ron, Devor Marshall

机构信息

Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Biophys J. 2003 Apr;84(4):2700-8. doi: 10.1016/S0006-3495(03)75075-9.

Abstract

The peculiar pseudounipolar geometry of primary sensory neurons can lead to ectopic generation of "extra spikes" in the region of the dorsal root ganglion potentially disrupting the fidelity of afferent signaling. We have used an explicit model of myelinated vertebrate sensory neurons to investigate the location and mechanism of extra spike formation, and its consequences for distortion of afferent impulse patterning. Extra spikes originate in the initial segment axon under conditions in which the soma spike becomes delayed and broadened. The broadened soma spike then re-excites membrane it has just passed over, initiating an extra spike which propagates outwards into the main conducting axon. Extra spike formation depends on cell geometry, electrical excitability, and the recent history of impulse activity. Extra spikes add to the impulse barrage traveling toward the spinal cord, but they also travel antidromically in the peripheral nerve colliding with and occluding normal orthodromic spikes. As a result there is no net increase in afferent spike number. However, extra spikes render firing more staccato by increasing the number of short and long interspike intervals in the train at the expense of intermediate intervals. There may also be more complex changes in the pattern of afferent spike trains, and hence in afferent signaling.

摘要

初级感觉神经元独特的假单极几何结构可导致背根神经节区域异位产生“额外峰电位”,这可能会破坏传入信号的保真度。我们使用了一个有髓脊椎动物感觉神经元的显式模型来研究额外峰电位形成的位置和机制,以及它对传入冲动模式失真的影响。额外峰电位在胞体峰电位延迟和变宽的条件下起源于轴突起始段。变宽的胞体峰电位随后重新激发其刚刚经过的膜,引发一个向外传播到主要传导轴突的额外峰电位。额外峰电位的形成取决于细胞几何结构、电兴奋性以及冲动活动的近期历史。额外峰电位增加了向脊髓传播的冲动“弹幕”,但它们也会在周围神经中逆向传播,与正常的顺向峰电位碰撞并使其受阻。结果是传入峰电位数量没有净增加。然而,额外峰电位通过增加序列中短和长峰电位间隔的数量,以牺牲中间间隔为代价,使放电更断断续续。传入峰电位序列的模式也可能有更复杂的变化,从而在传入信号方面也有更复杂的变化。

相似文献

1
Extra spike formation in sensory neurons and the disruption of afferent spike patterning.
Biophys J. 2003 Apr;84(4):2700-8. doi: 10.1016/S0006-3495(03)75075-9.
3
Spatiotemporal spike encoding of a continuous external signal.
Neural Comput. 2002 Jul;14(7):1599-628. doi: 10.1162/08997660260028638.
4
Spike-evoked suppression and burst patterning in dorsal root ganglion neurons of the rat.
J Physiol. 1997 May 15;501 ( Pt 1)(Pt 1):183-96. doi: 10.1111/j.1469-7793.1997.183bo.x.
5
The effects of antidromic discharges on orthodromic firing of primary afferents in the cat.
Brain Res. 1999 Apr 17;825(1-2):132-45. doi: 10.1016/s0006-8993(99)01236-6.
6
Two opposing roles of 4-AP-sensitive K+ current in initiation and invasion of spikes in rat mesencephalic trigeminal neurons.
J Neurophysiol. 2006 Oct;96(4):1887-901. doi: 10.1152/jn.00176.2006. Epub 2006 Apr 19.
7
Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons.
J Neurosci. 2005 Mar 9;25(10):2576-85. doi: 10.1523/JNEUROSCI.4118-04.2005.
9
Intermittent Failure of Spike Propagation in Primary Afferent Neurons during Tactile Stimulation.
J Neurosci. 2019 Dec 11;39(50):9927-9939. doi: 10.1523/JNEUROSCI.0975-19.2019. Epub 2019 Oct 31.
10
Effects of antidromic discharges in crayfish primary afferents.
J Neurophysiol. 2002 Oct;88(4):1753-65. doi: 10.1152/jn.2002.88.4.1753.

引用本文的文献

1
Multi-metric predictors of radiofrequency-treated trigeminal neuralgias.
Brain Commun. 2024 Jun 28;6(4):fcae216. doi: 10.1093/braincomms/fcae216. eCollection 2024.
2
A biophysically comprehensive model of urothelial afferent neurons: implications for sensory signalling in urinary bladder.
J Comput Neurosci. 2024 Feb;52(1):21-37. doi: 10.1007/s10827-024-00865-3. Epub 2024 Feb 12.
4
Dorsal Root Ganglion Stimulation for Chronic Pain: Hypothesized Mechanisms of Action.
J Pain. 2022 Feb;23(2):196-211. doi: 10.1016/j.jpain.2021.07.008. Epub 2021 Aug 20.
5
Current status and future directions of botulinum neurotoxins for targeting pain processing.
Toxins (Basel). 2015 Nov 4;7(11):4519-63. doi: 10.3390/toxins7114519.
7
Communication between neuronal somata and satellite glial cells in sensory ganglia.
Glia. 2013 Oct;61(10):1571-81. doi: 10.1002/glia.22541. Epub 2013 Aug 5.
10
Gliopathic pain: when satellite glial cells go bad.
Neuroscientist. 2009 Oct;15(5):450-63. doi: 10.1177/1073858409336094.

本文引用的文献

2
The mode of impulse conduction through the spinal ganglion.
Jpn J Physiol. 1959 Mar 25;9(1):33-42. doi: 10.2170/jjphysiol.9.33.
3
The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes.
Jpn J Physiol. 1957 Dec 20;7(4):297-323. doi: 10.2170/jjphysiol.7.297.
6
Pathophysiology of trigeminal neuralgia: the ignition hypothesis.
Clin J Pain. 2002 Jan-Feb;18(1):4-13. doi: 10.1097/00002508-200201000-00002.
7
8
Potent analgesic effects of GDNF in neuropathic pain states.
Science. 2000 Oct 6;290(5489):124-7. doi: 10.1126/science.290.5489.124.
9
Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain.
J Neurosci. 1999 Oct 1;19(19):8589-96. doi: 10.1523/JNEUROSCI.19-19-08589.1999.
10
Unexplained peculiarities of the dorsal root ganglion.
Pain. 1999 Aug;Suppl 6:S27-S35. doi: 10.1016/S0304-3959(99)00135-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验