Roguin Ariel, Avivi Aaron, Nitecki Samy, Rubinstein Irit, Levy Nina S, Abassi Zaid A, Resnick Murray B, Lache Orit, Melamed-Frank Meira, Joel Alma, Hoffman Aaron, Nevo Eviatar, Levy Andrew P
Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, Haifa 31096, Israel.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4644-8. doi: 10.1073/pnas.0330833100. Epub 2003 Apr 2.
The optimal vector, regulatory sequences, and method of delivery of angiogenic gene therapy are of considerable interest. The Spalax ehrenbergi superspecies live in subterranean burrows at low oxygen tensions and its tissues are highly vascularized. We tested whether continuous perimuscular administration of Spalax vascular endothelial growth factor (VEGF) DNA could increase tissue perfusion in a murine hindlimb ischemia model. Placebo or VEGF +/- internal ribosome entry site (IRES) was continuously administrated perimuscularly in the ischemic zone by using an infusion pump. None of the mice in the VEGF-treated group (>50 microg) developed visible necrosis vs. 33% of the placebo group. Microscopic necrosis was observed only in the placebo group. Spalax VEGF muscular infiltration resulted in a faster and more complete restoration of blood flow. The restoration of blood flow by VEGF was dose-dependent and more robust and rapid when using the VEGF-IRES elements. The flow restoration using continuous perimuscular infiltration was faster than single i.m. injections. Vessel density was higher in the VEGF and VEGF-IRES (-) groups compared with the placebo. Continuous perimuscular administration of angiogenic gene therapy offers a new approach to restore blood flow to an ischemic limb. Incorporation of an IRES element may assist in the expression of transgenes delivered to ischemic tissues. Further studies are needed to determine whether VEGF from the subterranean mole rat Spalax VEGF is superior to VEGF from other species. If so, 40 million years of Spalax evolution underground, including adaptive hypoxia tolerance, may prove important to human angiogenic gene therapy.
血管生成基因治疗的最佳载体、调控序列和递送方法备受关注。斯氏鼹形鼠超种生活在低氧张力的地下洞穴中,其组织血管高度丰富。我们测试了在小鼠后肢缺血模型中,持续肌肉周围给予斯氏鼹形鼠血管内皮生长因子(VEGF)DNA是否能增加组织灌注。通过输液泵在缺血区域持续肌肉周围给予安慰剂或VEGF +/- 内部核糖体进入位点(IRES)。VEGF治疗组(>50微克)的小鼠均未出现明显坏死,而安慰剂组为33%。仅在安慰剂组观察到微观坏死。斯氏鼹形鼠VEGF的肌肉浸润导致血流恢复更快且更完全。VEGF对血流的恢复呈剂量依赖性,使用VEGF-IRES元件时更强劲、迅速。持续肌肉周围浸润恢复血流比单次肌肉注射更快。与安慰剂相比,VEGF和VEGF-IRES(-)组的血管密度更高。血管生成基因治疗的持续肌肉周围给药为恢复缺血肢体血流提供了一种新方法。IRES元件的加入可能有助于传递到缺血组织的转基因的表达。需要进一步研究来确定来自地下鼹鼠斯氏鼹形鼠的VEGF是否优于其他物种的VEGF。如果是这样,斯氏鼹形鼠在地下4000万年的进化,包括适应性低氧耐受,可能对人类血管生成基因治疗很重要。