Suppr超能文献

基于优化的框架,用于推断和检验假设的代谢目标函数。

Optimization-based framework for inferring and testing hypothesized metabolic objective functions.

作者信息

Burgard Anthony P, Maranas Costas D

机构信息

Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biotechnol Bioeng. 2003 Jun 20;82(6):670-7. doi: 10.1002/bit.10617.

Abstract

An optimization-based framework is introduced for testing whether experimental flux data are consistent with different hypothesized objective functions. Specifically, we examine whether the maximization of a weighted combination of fluxes can explain a set of observed experimental data. Coefficients of importance (CoIs) are identified that quantify the fraction of the additive contribution of a given flux to a fitness (objective) function with an optimization that can explain the experimental flux data. A high CoI value implies that the experimental flux data are consistent with the hypothesis that the corresponding flux is maximized by the network, whereas a low value implies the converse. This framework (i.e., ObjFind) is applied to both an aerobic and anaerobic set of Escherichia coli flux data derived from isotopomer analysis. Results reveal that the CoIs for both growth conditions are strikingly similar, even though the flux distributions for the two cases are quite different, which is consistent with the presence of a single metabolic objective driving the flux distributions in both cases. Interestingly, the CoI associated with a biomass production flux, complete with energy and reducing power requirements, assumes a value 9 and 15 times higher than the next largest coefficient for the aerobic and anaerobic cases, respectively.

摘要

引入了一个基于优化的框架,用于测试实验通量数据是否与不同的假设目标函数一致。具体而言,我们研究通量加权组合的最大化是否能够解释一组观测到的实验数据。通过一种能够解释实验通量数据的优化方法,确定了重要性系数(CoI),该系数量化了给定通量对适应度(目标)函数的累加贡献比例。高CoI值意味着实验通量数据与网络使相应通量最大化的假设一致,而低CoI值则意味着相反情况。这个框架(即ObjFind)被应用于源自同位素异构体分析的需氧和厌氧大肠杆菌通量数据集。结果表明,尽管两种情况下的通量分布差异很大,但两种生长条件下的CoI非常相似,这与存在一个驱动两种情况下通量分布的单一代谢目标相一致。有趣的是,与生物质生产通量相关的CoI,连同能量和还原力需求,在需氧和厌氧情况下分别比第二大系数高9倍和15倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验