Suppr超能文献

蛋白质组调控模式决定大肠杆菌野生型和突变体表型。

Proteome Regulation Patterns Determine Escherichia coli Wild-Type and Mutant Phenotypes.

作者信息

Alter Tobias B, Blank Lars M, Ebert Birgitta E

机构信息

Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany.

Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany

出版信息

mSystems. 2021 Mar 9;6(2):e00625-20. doi: 10.1128/mSystems.00625-20.

Abstract

It is generally recognized that proteins constitute the key cellular component in shaping microbial phenotypes. Due to limited cellular resources and space, optimal allocation of proteins is crucial for microbes to facilitate maximum proliferation rates while allowing a flexible response to environmental changes. To account for the growth condition-dependent proteome in the constraint-based metabolic modeling of , we consolidated a coarse-grained protein allocation approach with the explicit consideration of enzymatic constraints on reaction fluxes. Besides representing physiologically relevant wild-type phenotypes and flux distributions, the resulting protein allocation model (PAM) advances the predictability of the metabolic responses to genetic perturbations. A main driver of mutant phenotypes was ascribed to inherited regulation patterns in protein distribution among metabolic enzymes. Moreover, the PAM correctly reflected metabolic responses to an augmented protein burden imposed by the heterologous expression of green fluorescent protein. In summary, we were able to model the effects of important and frequently applied metabolic engineering approaches on microbial metabolism. Therefore, we want to promote the integration of protein allocation constraints into classical constraint-based models to foster their predictive capabilities and application for strain analysis and engineering purposes. Predictive metabolic models are important, e.g., for generating biological knowledge and designing microbes with superior performance for target compound production. Yet today's whole-cell models either show insufficient predictive capabilities or are computationally too expensive to be applied to metabolic engineering purposes. By linking the inherent genotype-phenotype relationship to a complete representation of the proteome, the PAM advances the accuracy of simulated phenotypes and intracellular flux distributions of Being equally computationally lightweight as classical stoichiometric models and allowing for the application of established tools, the PAM and related simulation approaches will foster the use of a model-driven metabolic research. Applications range from the investigation of mechanisms of microbial evolution to the determination of optimal strain design strategies in metabolic engineering, thus supporting basic scientists and engineers alike.

摘要

人们普遍认为,蛋白质是塑造微生物表型的关键细胞成分。由于细胞资源和空间有限,蛋白质的优化分配对于微生物实现最大增殖率并灵活应对环境变化至关重要。为了在基于约束的代谢建模中考虑生长条件依赖的蛋白质组,我们整合了一种粗粒度的蛋白质分配方法,并明确考虑了酶对反应通量的约束。除了代表生理相关的野生型表型和通量分布外,所得的蛋白质分配模型(PAM)提高了对遗传扰动代谢反应的预测能力。突变体表型的一个主要驱动因素归因于代谢酶之间蛋白质分布的遗传调控模式。此外,PAM正确反映了绿色荧光蛋白异源表达所带来的增加的蛋白质负担的代谢反应。总之,我们能够对重要且常用的代谢工程方法对微生物代谢的影响进行建模。因此,我们希望促进将蛋白质分配约束整合到经典的基于约束的模型中,以增强其预测能力并应用于菌株分析和工程目的。预测性代谢模型很重要,例如,用于生成生物学知识和设计具有卓越性能以生产目标化合物的微生物。然而,当今的全细胞模型要么预测能力不足,要么计算成本过高,无法应用于代谢工程目的。通过将内在的基因型 - 表型关系与蛋白质组的完整表示联系起来,PAM提高了模拟表型和细胞内通量分布的准确性。与经典化学计量模型一样计算轻量,并允许应用既定的工具,PAM和相关模拟方法将促进模型驱动的代谢研究的使用。应用范围从微生物进化机制的研究到代谢工程中最佳菌株设计策略的确定,从而为基础科学家和工程师提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6017/8546978/d20bfc9179d2/msystems.00625-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验