Ganor Yonatan, Besser Michal, Ben-Zakay Naomie, Unger Tamar, Levite Mia
Weizmann Institute of Science, Rehovot, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.
J Immunol. 2003 Apr 15;170(8):4362-72. doi: 10.4049/jimmunol.170.8.4362.
T cells may encounter glutamate, the major excitatory neurotransmitter in the nervous system, when patrolling the brain and in glutamate-rich peripheral organs. Moreover, glutamate levels increase in the CNS in many pathological conditions in which T cells exert either beneficial or detrimental effects. We discovered that normal human T cells, human T leukemia cells, and mouse anti-myelin basic protein T cells express high levels of glutamate ion channel receptor (ionotropic) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype 3 (GluR3). The evidence for GluR3 on T cells includes GluR3-specific RT-PCR, Western blot, immunocytochemical staining and flow cytometry. Sequencing showed that the T cell-expressed GluR3 is identical with the brain GluR3. Glutamate (10 nM), in the absence of any additional molecule, triggered T cell function: integrin-mediated T cell adhesion to laminin and fibronectin, a function normally performed by activated T cells only. The effect of glutamate was mimicked by AMPA receptor-agonists and blocked specifically by the selective receptor-antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo[f]quinoxalin-2,3-dione (NBQX), and by relevant anti-integrin mAbs. Glutamate also increased the CXCR4-mediated T cell chemotactic migration toward the key chemokine CXCL12/stromal cell-derived factor-1. GluR3 expression on normal, cancer and autoimmune-associated T cells and the ability of glutamate to directly activate T cell function could be of substantial scientific and clinical importance to normal neuroimmune dialogues and to CNS diseases and injury, and especially to: 1) T cell transmigration to the CNS and patrolling in the brain, 2) T cell-mediated multiple sclerosis, and 3) autoimmune epilepsy, as neurotoxic anti-GluR3 Abs are found and suspected to cause/potentiate seizures and neuropathology in several types of human epilepsies. Thus far, GluR3 was found only on neurons and glia cells; our results reveal a novel peripheral source of this antigenic receptor.
T细胞在巡视大脑以及在富含谷氨酸的外周器官中时,可能会接触到谷氨酸,这是神经系统中的主要兴奋性神经递质。此外,在许多T细胞发挥有益或有害作用的病理状态下,中枢神经系统中的谷氨酸水平会升高。我们发现,正常人T细胞、人T白血病细胞以及小鼠抗髓鞘碱性蛋白T细胞均高表达α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)亚型3(GluR3)的谷氨酸离子通道受体(离子型)。T细胞上存在GluR3的证据包括GluR3特异性逆转录聚合酶链反应(RT-PCR)、蛋白质免疫印迹法、免疫细胞化学染色以及流式细胞术。测序结果表明,T细胞表达的GluR3与大脑中的GluR3相同。在没有任何其他分子的情况下,谷氨酸(10 nM)就能触发T细胞功能:整合素介导的T细胞与层粘连蛋白和纤连蛋白的黏附,这一功能通常仅由活化的T细胞执行。AMPA受体激动剂可模拟谷氨酸的作用,而选择性受体拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)、6-硝基-7-氨磺酰基苯并[f]喹喔啉-2,3-二酮(NBQX)以及相关的抗整合素单克隆抗体可特异性阻断该作用。谷氨酸还增强了CXCR4介导的T细胞向关键趋化因子CXCL12/基质细胞衍生因子-1的趋化迁移。正常、癌症及自身免疫相关T细胞上的GluR3表达以及谷氨酸直接激活T细胞功能的能力,对于正常的神经免疫对话、中枢神经系统疾病和损伤,尤其是对于:1)T细胞向中枢神经系统的迁移及在大脑中的巡视;2)T细胞介导的多发性硬化症;3)自身免疫性癫痫,可能具有重大的科学和临床意义,因为在几种类型的人类癫痫中发现并怀疑神经毒性抗GluR3抗体可导致/加重癫痫发作和神经病理学改变。迄今为止,仅在神经元和神经胶质细胞上发现了GluR3;我们的结果揭示了这种抗原受体的一个新的外周来源。