Mehta Ranjana, Gantz Donald L, Gursky Olga
Department of Physiology and Biophysics, Boston University School of Medicine, W329, 715 Albany Street, Boston, MA 02118, USA.
J Mol Biol. 2003 Apr 18;328(1):183-92. doi: 10.1016/s0022-2836(03)00155-4.
High-density lipoproteins (HDL) are heterogeneous complexes of proteins and lipids that mediate cholesterol removal from the body. Our thermal and chemical denaturation studies of mature spherical HDL isolated from human plasma show that, contrary to the widely held assumption, the particle stability has a kinetic rather than thermodynamic origin. Guanidinum hydrochloride (GdmHCl) concentration jumps at 25 degrees C monitored by circular dichroism (CD) at 222 nm reveal two dominant irreversible kinetic phases in HDL denaturation. The slower phase (relaxation time tau(1) approximately 2 x 10(4) seconds) is observed in 1-6 M GdmHCl, and the faster phase (tau(2) approximately 2 x 10(3) seconds) is detected in 3-6 M GdmHCl. Comparison of the free energy barriers associated with these phases, deltaG* = 16-17 kcal mol(-1), with the near-zero apparent thermodynamic stability inferred from the spectroscopic measurements after prolonged incubation in 0-6 M GdmHCl at 22 degrees C indicates the kinetic origin for HDL stabilization. Electron microscopic analysis of HDL incubated in 0-6 M GdmHCl suggests that the slower kinetic phase involves HDL fusion, while the faster phase involves particle rupture and release of the apolar lipid core. Thermal denaturation experiments indicate high enthalpic barriers for the particle rupture that may arise from the transient disruption of lipid and/or protein packing interactions. These results corroborate our earlier analysis of model discoidal HDL and indicate that a kinetic mechanism provides a universal natural strategy for lipoprotein stabilization. Such a mechanism may facilitate structural integrity of the heterogeneous lipoprotein particles, slow their spontaneous interconversions, and thereby modulate lipoprotein lifetime and functions.
高密度脂蛋白(HDL)是蛋白质和脂质的异质复合物,介导胆固醇从体内清除。我们对从人血浆中分离出的成熟球形HDL进行的热变性和化学变性研究表明,与广泛持有的假设相反,颗粒稳定性具有动力学而非热力学起源。在25℃下通过222nm处的圆二色性(CD)监测盐酸胍(GdmHCl)浓度跃变,揭示了HDL变性中的两个主要不可逆动力学阶段。在1-6M GdmHCl中观察到较慢的阶段(弛豫时间τ1约为2×10^4秒),在3-6M GdmHCl中检测到较快的阶段(τ2约为2×10^3秒)。将与这些阶段相关的自由能垒ΔG* = 16-17kcal mol^(-1)与在22℃下于0-6M GdmHCl中长时间孵育后从光谱测量推断出的接近零的表观热力学稳定性进行比较,表明HDL稳定化的动力学起源。对在0-6M GdmHCl中孵育的HDL进行电子显微镜分析表明,较慢的动力学阶段涉及HDL融合,而较快的阶段涉及颗粒破裂和非极性脂质核心的释放。热变性实验表明颗粒破裂存在高焓垒,这可能源于脂质和/或蛋白质堆积相互作用的瞬时破坏。这些结果证实了我们早期对模型盘状HDL的分析,并表明动力学机制为脂蛋白稳定化提供了一种普遍的自然策略。这种机制可能有助于异质脂蛋白颗粒的结构完整性,减缓其自发相互转化,从而调节脂蛋白的寿命和功能。