Guha Madhumita, Gao Xuan, Jayaraman Shobini, Gursky Olga
Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
Biochemistry. 2008 Nov 4;47(44):11393-7. doi: 10.1021/bi8014746. Epub 2008 Oct 8.
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.
高密度脂蛋白(HDL)是蛋白质 - 脂质聚集体,可清除细胞内多余的胆固醇并预防动脉粥样硬化。HDL通过减缓蛋白质解离和脂蛋白融合的动力学屏障得以稳定。我们提出,类似的屏障调节血浆HDL的代谢重塑;因此,使HDL不稳定并加速其变性的颗粒组成变化可能会加速其代谢重塑。为了验证这一观点,我们将关于HDL介导的细胞胆固醇流出和酯化(胆固醇清除过程中必不可少的早期步骤)的现有报道与我们对HDL稳定性的动力学研究相关联。结果支持了我们的假设,并表明在模型盘状脂蛋白中加速胆固醇流出和酯化的因素(包括减小蛋白质大小、缩短脂肪酰链长度和/或增加顺式不饱和水平)会使脂蛋白不稳定,并加速其融合和载脂蛋白解离。血浆球形HDL的氧化研究显示出类似趋势:Cu(2+)或OCl(-)的轻度氧化会加速细胞胆固醇流出、蛋白质解离和HDL融合,而广泛氧化则会抑制这些反应。因此,适度的不稳定可能通过促进胆固醇和亲脂性酶的插入、促进细胞胆固醇的主要受体——低脂载脂蛋白的解离,从而加速HDL代谢,对HDL功能有益。因此,HDL稳定性必须精确平衡,以维持脂蛋白聚集体的结构完整性,并确保HDL与其代谢伙伴相互作用所需的结构特异性,同时在胆固醇转运的关键节点促进HDL的快速重塑和周转。HDL稳定性与重塑之间的负相关说明了在由动力学屏障稳定的大分子聚集体中结构无序的功能重要性。