Danpure Christopher J, Lumb Michael J, Birdsey Graeme M, Zhang Xiaoxuan
Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
Biochim Biophys Acta. 2003 Apr 11;1647(1-2):70-5. doi: 10.1016/s1570-9639(03)00055-4.
The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease.
在患有遗传性肾结石疾病原发性高草酸尿症1型(PH1)的患者中,由于常见的Pro(11)Leu多态性与PH1特异性Gly(170)Arg突变之间的协同相互作用,依赖磷酸吡哆醛(PLP)的丙氨酸:乙醛酸转氨酶(AGT)从过氧化物酶体错误定位到线粒体。新合成的AGT在过氧化物酶体和线粒体之间的动力学分配由以下因素的综合作用决定:(1)隐秘线粒体靶向信息的产生,以及(2)AGT二聚化的抑制。AGT的晶体结构最近已被解析,这使得各种多态性和突变的影响能够根据AGT的三维构象得到合理的解释。提高二聚体稳定性和/或提高二聚体形成速率的方法在制定治疗这种原本难以治疗的危及生命疾病的新策略方面具有潜力。