Therriault Daniel, White Scott R, Lewis Jennifer A
Department of Aerospace Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nat Mater. 2003 Apr;2(4):265-71. doi: 10.1038/nmat863.
The creation of geometrically complex fluidic devices is a subject of broad fundamental and technological interest. Here, we demonstrate the fabrication of three-dimensional (3D) microvascular networks through direct-write assembly of a fugitive organic ink. This approach yields a pervasive network of smooth cylindrical channels (approximately 10-300 microm) with defined connectivity. Square-spiral towers, isolated within this vascular network, promote fluid mixing through chaotic advection. These vertical towers give rise to dramatic improvements in mixing relative to simple straight (1D) and square-wave (2D) channels while significantly reducing the device planar footprint. We envisage that 3D microvascular networks will provide an enabling platform for a wide array of fluidic-based applications.
创建几何形状复杂的流体装置是一个具有广泛基础和技术意义的课题。在此,我们展示了通过可 fugitive 有机墨水的直接写入组装来制造三维(3D)微血管网络。这种方法产生了一个由具有确定连通性的光滑圆柱形通道(约 10 - 300 微米)组成的普遍网络。孤立于该血管网络内的方形螺旋塔通过混沌平流促进流体混合。相对于简单的直通道(1D)和方波通道(2D),这些垂直塔在混合方面带来了显著改善,同时显著减小了装置的平面占地面积。我们设想 3D 微血管网络将为广泛的基于流体的应用提供一个支持平台。