Suppr超能文献

基于传统制造技术和增材制造技术的骨支架工程综述

Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies.

作者信息

Mohammed Abdullah, Jiménez Amaia, Bidare Prveen, Elshaer Amr, Memic Adnan, Hassanin Hany, Essa Khamis

机构信息

School of Engineering, University of Birmingham, Birmingham, United Kingdom.

TECNUN Escuela de Ingeniería, Universidad de Navarra, Manuel de Lardizábal San Sebastián, Spain.

出版信息

3D Print Addit Manuf. 2024 Aug 20;11(4):1418-1440. doi: 10.1089/3dp.2022.0360. eCollection 2024 Aug.

Abstract

Bone is a complex connective tissue that serves as mechanical and structural support for the human body. Bones' fractures are common, and the healing process is physiologically complex and involves both mechanical and biological aspects. Tissue engineering of bone scaffolds holds great promise for the future treatment of bone injuries. However, conventional technologies to prepare bone scaffolds cannot provide the required properties of human bones. Over the past decade, three-dimensional (3D) printing or additive manufacturing technologies have enabled control over the creation of bone scaffolds with personalized geometries, appropriate materials, and tailored pores. This article aims to review recent advances in the fabrication of bone scaffolds for bone repair and regeneration. A detailed review of bone fracture repair and an in-depth discussion on conventional manufacturing and 3D printing techniques are introduced with an emphasis on novel studies concepts, potentials, and limitations.

摘要

骨骼是一种复杂的结缔组织,为人体提供机械和结构支撑。骨折很常见,其愈合过程在生理上很复杂,涉及机械和生物学两个方面。骨支架的组织工程对未来骨损伤的治疗具有巨大潜力。然而,制备骨支架的传统技术无法提供人体骨骼所需的特性。在过去十年中,三维(3D)打印或增材制造技术能够控制创建具有个性化几何形状、合适材料和定制孔隙的骨支架。本文旨在综述用于骨修复和再生的骨支架制造的最新进展。介绍了骨折修复的详细综述以及对传统制造和3D打印技术的深入讨论,重点是新颖的研究概念、潜力和局限性。

相似文献

1
Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies.
3D Print Addit Manuf. 2024 Aug 20;11(4):1418-1440. doi: 10.1089/3dp.2022.0360. eCollection 2024 Aug.
2
3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.
Int J Biol Macromol. 2023 Feb 28;229:636-653. doi: 10.1016/j.ijbiomac.2022.12.267. Epub 2022 Dec 29.
4
Strategic advances in Vat Photopolymerization for 3D printing of calcium phosphate-based bone scaffolds: A review.
Bioact Mater. 2025 Jun 27;52:719-752. doi: 10.1016/j.bioactmat.2025.05.001. eCollection 2025 Oct.
5
Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration.
J Biomed Mater Res A. 2025 Jan;113(1):e37804. doi: 10.1002/jbm.a.37804. Epub 2024 Oct 10.
6
Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration.
Acta Biomater. 2025 Jun 15;200:67-86. doi: 10.1016/j.actbio.2025.05.042. Epub 2025 May 23.
7
Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration.
Acta Biomater. 2025 Jun 15;200:686-702. doi: 10.1016/j.actbio.2025.05.051. Epub 2025 May 21.
8
Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):279-291. doi: 10.1089/ten.TEA.2019.0237. Epub 2020 Feb 27.
10
Evaluation of 3D-Printed Polylactic Acid as a Bone Substitute: An Animal Study in a Rat Model.
Clin Exp Dent Res. 2025 Aug;11(4):e70201. doi: 10.1002/cre2.70201.

引用本文的文献

本文引用的文献

3
A review of 3D printing techniques for environmental applications.
Curr Opin Chem Eng. 2020;28:173-178. doi: 10.1016/j.coche.2020.08.002.
4
An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning.
Mater Sci Eng C Mater Biol Appl. 2021 May;124:112079. doi: 10.1016/j.msec.2021.112079. Epub 2021 Mar 27.
5
Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices.
Materials (Basel). 2021 Mar 2;14(5):1169. doi: 10.3390/ma14051169.
7
Stainless steel with tailored porosity using canister-free hot isostatic pressing for improved osseointegration implants.
J Mater Chem B. 2017 Dec 21;5(47):9384-9394. doi: 10.1039/c7tb02444d. Epub 2017 Nov 24.
8
Additive Manufacturing Technologies for Drug Delivery Applications.
Int J Pharm. 2020 Apr 30;580:119245. doi: 10.1016/j.ijpharm.2020.119245. Epub 2020 Mar 20.
9
3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering.
Bioact Mater. 2019 Sep 25;4:256-260. doi: 10.1016/j.bioactmat.2019.09.001. eCollection 2019 Dec.
10
Additive manufacturing of biomaterials.
Prog Mater Sci. 2018 Apr;93:45-111. doi: 10.1016/j.pmatsci.2017.08.003. Epub 2017 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验