Suppr超能文献

青枯雷尔氏菌GMI1000二分体基因组中的简单序列重复和组成偏倚

Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome.

作者信息

Coenye Tom, Vandamme Peter

机构信息

Laboratorium voor Microbiologie, Ghent University,K,L, Ledeganckstraat 35, B-9000 Gent, Belgium.

出版信息

BMC Genomics. 2003 Mar 17;4(1):10. doi: 10.1186/1471-2164-4-10.

Abstract

BACKGROUND

Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid) and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and composition of simple sequence repeats (SSRs) between both replicons and also compared the respective compositional biases.

RESULTS

Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed.

CONCLUSIONS

The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.

摘要

背景

青枯雷尔氏菌是一种重要的植物病原体。青枯雷尔氏菌GMI1000的基因组由两个复制子组成(一条3.7兆碱基对的染色体和一条2.1兆碱基对的大质粒),这种二分体基因组结构是大多数青枯雷尔氏菌菌株的特征。为了确定该大质粒是通过近期的水平基因转移获得的,还是祖先单染色体的一部分,我们比较了两个复制子之间简单序列重复(SSR)的丰度、分布和组成,还比较了各自的组成偏向性。

结果

我们的数据表明,两个复制子在SSR的分布和组成以及组成偏向性的存在方面非常相似。观察到的SSR和组成偏向性的微小差异可能归因于基因表达和基因表达调控的微小差异,或者可归因于观察到的样本数量较少。

结论

观察到的相似性表明两个复制子有着相似的进化历史,因此表明该大质粒并非近期通过侧向基因转移从其他生物体获得,而是青枯雷尔氏菌祖先染色体的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffa8/153513/04f1a82d3932/1471-2164-4-10-1.jpg

相似文献

2
Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.
Genes Genomics. 2018 Jun;40(6):657-668. doi: 10.1007/s13258-018-0667-3. Epub 2018 Feb 8.
3
Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis.
J Bacteriol. 2007 Jan;189(2):377-87. doi: 10.1128/JB.00999-06. Epub 2006 Nov 3.
4
Genome sequence of the plant pathogen Ralstonia solanacearum.
Nature. 2002 Jan 31;415(6871):497-502. doi: 10.1038/415497a.
5
The Second Chromosome Promotes the Adaptation of the Genus to Complex Environments.
Microbiol Spectr. 2021 Dec 22;9(3):e0098021. doi: 10.1128/Spectrum.00980-21. Epub 2021 Dec 8.
8
Natural transformation in the Ralstonia solanacearum species complex: number and size of DNA that can be transferred.
FEMS Microbiol Ecol. 2008 Oct;66(1):14-24. doi: 10.1111/j.1574-6941.2008.00552.x. Epub 2008 Jul 25.
9
Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes.
Res Microbiol. 1999 Nov-Dec;150(9-10):735-43. doi: 10.1016/s0923-2508(99)00119-9.
10
Complex prokaryotic genome structure: rapid evolution of chromosome II.
Genome. 2010 Sep;53(9):675-87. doi: 10.1139/g10-046.

引用本文的文献

3
Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management.
Front Plant Sci. 2017 Jul 20;8:1290. doi: 10.3389/fpls.2017.01290. eCollection 2017.
5
Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.
PLoS One. 2013 May 28;8(5):e63155. doi: 10.1371/journal.pone.0063155. Print 2013.
6
Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II.
Appl Environ Microbiol. 2012 Apr;78(7):2367-75. doi: 10.1128/AEM.06123-11. Epub 2012 Jan 27.
7
Modes of cytometric bacterial DNA pattern: a tool for pursuing growth.
Cell Prolif. 2007 Oct;40(5):621-39. doi: 10.1111/j.1365-2184.2007.00465.x.
8
Evolutionary dynamics of Ralstonia solanacearum.
Appl Environ Microbiol. 2007 Feb;73(4):1225-38. doi: 10.1128/AEM.01253-06. Epub 2006 Dec 22.
9
Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis.
J Bacteriol. 2007 Jan;189(2):377-87. doi: 10.1128/JB.00999-06. Epub 2006 Nov 3.
10
Single-nucleotide repeat analysis for subtyping Bacillus anthracis isolates.
J Clin Microbiol. 2006 Mar;44(3):777-82. doi: 10.1128/JCM.44.3.777-782.2006.

本文引用的文献

1
Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum.
Annu Rev Phytopathol. 1991;29:65-87. doi: 10.1146/annurev.py.29.090191.000433.
2
Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids.
Funct Integr Genomics. 2002 Nov;2(6):274-81. doi: 10.1007/s10142-002-0068-0. Epub 2002 Aug 1.
3
Comparison of genome structures of vibrios, bacteria possessing two chromosomes.
J Bacteriol. 2002 Aug;184(16):4351-8. doi: 10.1128/JB.184.16.4351-4358.2002.
4
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).
Nature. 2002 May 9;417(6885):141-7. doi: 10.1038/417141a.
6
Genome sequence of the plant pathogen Ralstonia solanacearum.
Nature. 2002 Jan 31;415(6871):497-502. doi: 10.1038/415497a.
9
Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria.
Curr Opin Microbiol. 2001 Oct;4(5):570-81. doi: 10.1016/s1369-5274(00)00253-8.
10
Instability of repetitive DNA sequences: the role of replication in multiple mechanisms.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8319-25. doi: 10.1073/pnas.111008398.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验