Suppr超能文献

基于基因分布分析推断的植物病原菌青枯雷尔氏菌的基因组结构和系统发育

Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis.

作者信息

Guidot Alice, Prior Philippe, Schoenfeld Jens, Carrère Sébastien, Genin Stéphane, Boucher Christian

机构信息

CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France.

出版信息

J Bacteriol. 2007 Jan;189(2):377-87. doi: 10.1128/JB.00999-06. Epub 2006 Nov 3.

Abstract

In the present study, we investigated the gene distribution among strains of the highly polymorphic plant pathogenic beta-proteobacterium Ralstonia solanacearum, paying particular attention to the status of known or candidate pathogenicity genes. Based on the use of comparative genomic hybridization on a pangenomic microarray for the GMI1000 reference strain, we have defined the conditions that allowed comparison of the repertoires of genes among a collection of 18 strains that are representative of the biodiversity of the R. solanacearum species. This identified a list of 2,690 core genes present in all tested strains. As a corollary, a list of 2,338 variable genes within the R. solanacearum species has been defined. The hierarchical clustering based on the distribution of variable genes is fully consistent with the phylotype classification that was previously defined from the nucleotide sequence analysis of four genes. The presence of numerous pathogenicity-related genes in the core genome indicates that R. solanacearum is an ancestral pathogen. The results establish the long coevolution of the two replicons that constitute the bacterial genome. We also demonstrate the clustering of variable genes in genomic islands. Most genomic islands are included in regions with an alternative codon usage, suggesting that they originate from acquisition of foreign genes through lateral gene transfers. Other genomic islands correspond to genes that have the same base composition as core genes, suggesting that they either might be ancestral genes lost by deletion in certain strains or might originate from horizontal gene transfers.

摘要

在本研究中,我们调查了高度多态的植物病原性β-变形杆菌茄科劳尔氏菌菌株间的基因分布,特别关注已知或候选致病基因的状况。基于在全基因组微阵列上对GMI1000参考菌株进行比较基因组杂交,我们确定了能够比较代表茄科劳尔氏菌物种生物多样性的18个菌株基因库的条件。这确定了所有测试菌株中存在的2690个核心基因列表。作为必然结果,还定义了茄科劳尔氏菌物种内2338个可变基因的列表。基于可变基因分布的层次聚类与先前根据四个基因的核苷酸序列分析定义的系统型分类完全一致。核心基因组中存在众多与致病性相关的基因表明茄科劳尔氏菌是一种原始病原体。结果证实了构成细菌基因组的两个复制子的长期共同进化。我们还证明了可变基因在基因组岛中的聚类。大多数基因组岛包含在密码子使用方式不同的区域,这表明它们起源于通过横向基因转移获得的外源基因。其他基因组岛对应于与核心基因具有相同碱基组成的基因,这表明它们要么可能是某些菌株中因缺失而丢失的祖先基因,要么可能起源于水平基因转移。

相似文献

1
Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis.
J Bacteriol. 2007 Jan;189(2):377-87. doi: 10.1128/JB.00999-06. Epub 2006 Nov 3.
4
Ralstonia solanacearum virulence increased following large interstrain gene transfers by natural transformation.
Mol Plant Microbe Interact. 2011 Apr;24(4):497-505. doi: 10.1094/MPMI-09-10-0197.
5
Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200.
BMC Microbiol. 2021 Apr 19;21(1):118. doi: 10.1186/s12866-021-02157-7.
7
Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.
Genes Genomics. 2018 Jun;40(6):657-668. doi: 10.1007/s13258-018-0667-3. Epub 2018 Feb 8.
9
Phylogenomic analysis of the genus Ralstonia based on 686 single-copy genes.
Antonie Van Leeuwenhoek. 2016 Jan;109(1):71-82. doi: 10.1007/s10482-015-0610-4. Epub 2015 Oct 22.
10
Pathogenomics of the Ralstonia solanacearum species complex.
Annu Rev Phytopathol. 2012;50:67-89. doi: 10.1146/annurev-phyto-081211-173000. Epub 2012 May 1.

引用本文的文献

2
From prediction to function: Current practices and challenges towards the functional characterization of type III effectors.
Front Microbiol. 2023 Feb 8;14:1113442. doi: 10.3389/fmicb.2023.1113442. eCollection 2023.
3
Loss of Mobile Genomic Islands in Metal-Resistant, Hydrogen-Oxidizing Cupriavidus metallidurans.
Appl Environ Microbiol. 2022 Feb 22;88(4):e0204821. doi: 10.1128/AEM.02048-21. Epub 2021 Dec 15.
5
Genomic sequencing of different sequevars of Ralstonia solanacearum belonging to the Moko ecotype.
Genet Mol Biol. 2021 Jan 8;44(1):e20200172. doi: 10.1590/1678-4685-GMB-2020-0172. eCollection 2021.
7
A quick and efficient hydroponic potato infection method for evaluating potato resistance and virulence.
Plant Methods. 2019 Nov 30;15:145. doi: 10.1186/s13007-019-0530-9. eCollection 2019.
8
Complete Genome Sequence of Sequevar 14M Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer.
Front Microbiol. 2019 Aug 14;10:1893. doi: 10.3389/fmicb.2019.01893. eCollection 2019.
9
Prediction of Host-Specific Genes by Pan-Genome Analyses of the Korean Species Complex.
Front Microbiol. 2019 Mar 15;10:506. doi: 10.3389/fmicb.2019.00506. eCollection 2019.

本文引用的文献

1
Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum.
Annu Rev Phytopathol. 1991;29:65-87. doi: 10.1146/annurev.py.29.090191.000433.
3
Genomic islands and the ecology and evolution of Prochlorococcus.
Science. 2006 Mar 24;311(5768):1768-70. doi: 10.1126/science.1122050.
5
Identification of open reading frames unique to a select agent: Ralstonia solanacearum race 3 biovar 2.
Mol Plant Microbe Interact. 2006 Jan;19(1):69-79. doi: 10.1094/MPMI-19-0069.
7
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5. doi: 10.1073/pnas.0506758102. Epub 2005 Sep 19.
9
Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species.
Microbiology (Reading). 2005 Sep;151(Pt 9):2907-2922. doi: 10.1099/mic.0.28099-0.
10
New insights to the function of phytopathogenic bacterial type III effectors in plants.
Annu Rev Plant Biol. 2005;56:509-31. doi: 10.1146/annurev.arplant.56.032604.144218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验