Suppr超能文献

Monocarboxylates and glucose utilization as energy substrates in rat brain slices under selective glial poisoning--a 31P NMR study.

作者信息

Kitano Takaaki, Nisimaru Naoko, Shibata Eriko, Iwasaka Hideo, Noguchi Takayuki, Yokoi Isao

机构信息

Department of Anesthesiology, Faculty of Medicine, Oita Medical University, Oita-gun, Oita, Japan.

出版信息

Mol Cell Biochem. 2003 Feb;244(1-2):77-81.

Abstract

We have investigated effects of various energy substrates including glucose, lactate and pyruvate on the recovery of the high energy phosphate levels after high-K+ stimulation in rat brain slices by using 31P NMR. It was found that lactate, pyruvate and glucose almost equally supported the recovery of phosphocreatine (PCr) levels after high-K+ stimulation (60 mM, 8 min) in artificial cerebrospinal fluid (ACSF). In iodoacetic acid (IAA) and fluorocitrate (FC)-pretreated slices, whereas glucose was unable to be utilized, the recovery of the PCr level after high-K+ stimulation in ACSF containing lactate was completely abolished, the recovery of the PCr in ACSF containing pyruvate was unaffected. These results indicate that neurons themselves can utilize pyruvate as an exogenous energy substrate, but not lactate, without glial support. In intact brain, glucose may be metabolized to pyruvate in glial cells and then transported to neurons as an energy substrate. These suggest an astrocyte-neuron pyruvate shuttle mechanism of the brain energy metabolism in vivo. We also investigated the effect of ischemic-preconditioning in FC-pretreated slices, which showed that the PCr levels recovered substantially in ACSF containing lactate after high-K+ stimulation. This indicates that after the preconditioning, such as ischemia, neurons themselves acquired the ability to utilize lactate as an energy substrate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验