Suppr超能文献

基于脑电图的脑机接口的临床应用:一名严重运动障碍患者的案例研究。

Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment.

作者信息

Neuper C, Müller G R, Kübler A, Birbaumer N, Pfurtscheller G

机构信息

Department of Medical Informatics, Ludwig-Boltzmann Institute for Medical Informatics and Neuroinformatics, University of Technology Graz, Graz Austria.

出版信息

Clin Neurophysiol. 2003 Mar;114(3):399-409. doi: 10.1016/s1388-2457(02)00387-5.

Abstract

OBJECTIVE

This case study describes how a completely paralyzed patient, diagnosed with severe cerebral palsy, was trained over a period of several months to use an electroencephalography (EEG)-based brain-computer interface (BCI) for verbal communication.

METHODS

EEG feedback training was performed in the patient's home (clinic), supervised from a distant laboratory with the help of a 'telemonitoring system'. Online feedback computation was based on single-trial analysis and classification of specific band power features of the spontaneous EEG. Task-related changes in brain oscillations over the course of training steps was investigated by quantifying time-frequency maps of event-related (de-)synchronization (ERD/ERS).

RESULTS

The patient learned to 'produce' two distinct EEG patterns, beta band ERD during movement imagery vs. no ERD during relaxing, and to use this for BCI-controlled spelling. Significant learning progress was found as a function of training session, resulting in an average accuracy level of 70% (correct responses) for letter selection. 'Copy spelling' was performed with a rate of approximately one letter per min.

CONCLUSIONS

The proposed BCI training procedure, based on electroencephalogram (EEG) biofeedback and concomitant adaptation of feature extraction and classification, may improve actual levels of communication ability in locked-in patients. 'Telemonitoring-assisted' BCI training facilitates clinical application in a larger number of patients.

摘要

目的

本案例研究描述了一名被诊断为重度脑瘫的完全瘫痪患者,如何在数月时间里接受训练,以使用基于脑电图(EEG)的脑机接口(BCI)进行言语交流。

方法

在患者家中(诊所)进行EEG反馈训练,借助“远程监测系统”由远程实验室进行监督。在线反馈计算基于自发EEG特定频段功率特征的单次试验分析和分类。通过量化事件相关(去)同步化(ERD/ERS)的时频图,研究训练步骤过程中与任务相关的脑振荡变化。

结果

患者学会“产生”两种不同的EEG模式,即运动想象期间的β频段ERD与放松期间无ERD,并将其用于BCI控制的拼写。发现随着训练课程的进行有显著的学习进展,字母选择的平均准确率达到70%(正确反应)。“复制拼写”的速度约为每分钟一个字母。

结论

所提出的基于脑电图(EEG)生物反馈以及特征提取和分类的伴随适应性调整的BCI训练程序,可能会提高闭锁综合征患者的实际交流能力水平。“远程监测辅助”的BCI训练有助于在更多患者中进行临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验