Suppr超能文献

国际放射防护委员会(ICRP)第66号呼吸道模型中参数不确定性的影响:颗粒物清除

Influences of parameter uncertainties within the ICRP-66 respiratory tract model: particle clearance.

作者信息

Bolch Wesley E, Huston Thomas E, Farfán Eduardo B, Vernetson William G, Bolch W Emmett

机构信息

Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611-8300, USA.

出版信息

Health Phys. 2003 Apr;84(4):421-35. doi: 10.1097/00004032-200304000-00002.

Abstract

Quantifying radiological risk following the inhalation of radioactive aerosols entails not only an assessment of particle deposition within respiratory tract regions but a full accounting of clearance mechanisms whereby particles may be translocated to adjacent respiratory tissue regions, absorbed to blood, or released to the gastrointestinal tract. The model outlined in ICRP Publication 66 represents to date one of the most complete overall descriptions of particle deposition and clearance, as well as localized radiation dosimetry, within the respiratory tract. In this study, a previous review of the ICRP-66 deposition model is extended to the study of the subsequent clearance model. A systematic review of the clearance component within the ICRP 66 respiratory tract model was conducted in which probability density functions were assigned to all input parameters for both 239PuO2 and 238UO2/238U3O8. These distributions were subsequently incorporated within a computer code LUDUC (Lung Dose Uncertainty Code) in which Latin hypercube sampling techniques are used to generate multiple (e.g., 1,000) sets of input vectors (i.e., trials) for all model parameters needed to assess mechanical clearance and particle dissolution/absorption. Integral numbers of nuclear disintegrations, U(s), in various lung regions were shown to be well-described by lognormal probability distributions. Of the four extrathoracic clearance compartments of the respiratory tract, uncertainties in U(s), expressed as the ratio of its 95% to 5% confidence levels, were highest within the LN(ET) tissues for 239PuO2 (ratio of 50 to 130) and within the ET(seq) tissues for 238UO2/238U3O8 (ratio of 12 to 50). Peak uncertainties in U(s) in these respiratory regions occurred at particle sizes of approximately 0.5-0.6 microm where uncertainties in ET2 particle deposition fractions accounted for only approximately 10% of the total U(s) uncertainty for 239PuO2, and only approximately 30% of the total U(s) uncertainty for 238UO2/238U3O8 (the remainder is attributed to the clearance model alone). Of the eight clearance compartments within the thoracic regions of the respiratory tract, and for particle sizes below approximately 5 microm, uncertainties in U(s) were highest within the LN(TH) tissues for 239PuO2 (ratio of 60 to 80) and within the BB(seq) tissues for 238UO2/238U3O8 (ratio of 20 and 60). At particle sizes exceeding approximately 5 microm in aerodynamic diameter, peak uncertainties in U(s) are noted for the AI, bb(seq), and bb1 clearance compartments. As the particle size approaches 10 microm in size, uncertainties in U(s) within these three thoracic tissue regions approach a factor of 1,000 and are dominated by corresponding uncertainties in particle deposition.

摘要

对吸入放射性气溶胶后的放射风险进行量化,不仅需要评估呼吸道区域内的颗粒沉积情况,还需要全面考虑清除机制,通过这些机制,颗粒可能转移至相邻的呼吸组织区域、被血液吸收或释放至胃肠道。国际放射防护委员会(ICRP)第66号出版物中概述的模型,是迄今为止对呼吸道内颗粒沉积与清除以及局部辐射剂量测定最为完整的总体描述之一。在本研究中,对ICRP - 66沉积模型的先前综述扩展至对后续清除模型的研究。对ICRP 66呼吸道模型中的清除部分进行了系统综述,为239PuO2和238UO2/238U3O8的所有输入参数分配了概率密度函数。这些分布随后被纳入计算机代码LUDUC(肺剂量不确定性代码),其中使用拉丁超立方抽样技术为评估机械清除和颗粒溶解/吸收所需的所有模型参数生成多个(例如1000个)输入向量集(即试验)。结果表明,不同肺区域内核衰变的整数数量U(s)可用对数正态概率分布很好地描述。在呼吸道的四个胸外清除隔室中,以95%至5%置信水平的比值表示的U(s)不确定性,对于239PuO2在LN(ET)组织中最高(比值为50至130),对于238UO2/238U3O8在ET(seq)组织中最高(比值为12至50)。在这些呼吸区域中,U(s)的峰值不确定性出现在粒径约为0.5 - 0.6微米处,此时ET2颗粒沉积分数的不确定性仅占239PuO2总U(s)不确定性的约10%,占238UO2/238U3O8总U(s)不确定性的约30%(其余部分仅归因于清除模型)。在呼吸道胸段区域的八个清除隔室中,对于粒径低于约5微米的情况,U(s)的不确定性对于239PuO2在LN(TH)组织中最高(比值为60至80),对于238UO2/238U3O8在BB(seq)组织中最高(比值为20至60)。在空气动力学直径超过约5微米的粒径下,U(s)的峰值不确定性出现在AI、bb(seq)和bb1清除隔室。当粒径接近10微米时,这三个胸段组织区域内U(s)的不确定性接近1000倍,且主要由颗粒沉积的相应不确定性主导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验