Suppr超能文献

用于临床图像中黑色素瘤辨别的颜色直方图分析。

Colour histogram analysis for melanoma discrimination in clinical images.

作者信息

Faziloglu Yunus, Stanley R Joe, Moss Randy H, Van Stoecker William, McLean Rob P

机构信息

University of Missouri-Rolla, Department of Electrical and Computer Engineering, 229 Emerson Electric Co, Hall, MO 65409-0040, USA.

出版信息

Skin Res Technol. 2003 May;9(2):147-56. doi: 10.1034/j.1600-0846.2003.00030.x.

Abstract

BACKGROUND

Malignant melanoma, the most deadly form of skin cancer, has a good prognosis if treated in the curable early stages. Colour provides critical discriminating information for the diagnosis of malignant melanoma.

METHODS

This research introduces a three-dimensional relative colour histogram analysis technique to identify colours characteristic of melanomas and then applies these 'melanoma colours' to differentiate benign skin lesions from melanomas. The relative colour of a skin lesion is determined based on subtracting a representative colour of the surrounding skin from each lesion pixel. A colour mapping for 'melanoma colours' is determined using a training set of images. A percent melanoma colour feature, defined as the percentage of the lesion pixels that are melanoma colours, is used for discriminating melanomas from benign lesions. The technique is evaluated using a clinical image data set of 129 malignant melanomas and 129 benign lesions consisting of 40 seborrheic keratoses and 89 nevocellular nevi.

RESULTS

Using the percent melanoma colour feature for discrimination, experimental results yield correct melanoma and benign lesion discrimination rates of 84.3 and 83.0%, respectively.

CONCLUSIONS

The results presented in this work suggest that lesion colour in clinical images is strongly related to the presence of melanoma in that lesion. However, colour information should be combined with other information in order to further reduce the false negative and false positive rates.

摘要

背景

恶性黑色素瘤是皮肤癌最致命的形式,若在可治愈的早期阶段进行治疗,预后良好。颜色为恶性黑色素瘤的诊断提供关键的鉴别信息。

方法

本研究引入一种三维相对颜色直方图分析技术,以识别黑色素瘤的特征颜色,然后应用这些“黑色素瘤颜色”来区分良性皮肤病变和黑色素瘤。皮肤病变的相对颜色是通过从每个病变像素中减去周围皮肤的代表性颜色来确定的。使用一组训练图像来确定“黑色素瘤颜色”的颜色映射。一个定义为病变像素中黑色素瘤颜色所占百分比的黑色素瘤颜色特征百分比,用于区分黑色素瘤和良性病变。使用一个包含129例恶性黑色素瘤和129例良性病变(包括40例脂溢性角化病和89例痣细胞痣)的临床图像数据集对该技术进行评估。

结果

使用黑色素瘤颜色特征百分比进行鉴别,实验结果显示黑色素瘤和良性病变的正确鉴别率分别为84.3%和83.0%。

结论

本研究结果表明,临床图像中的病变颜色与该病变中黑色素瘤的存在密切相关。然而,颜色信息应与其他信息相结合,以进一步降低假阴性和假阳性率。

相似文献

9
Fuzzy logic techniques for blotch feature evaluation in dermoscopy images.用于皮肤镜图像中斑点特征评估的模糊逻辑技术
Comput Med Imaging Graph. 2009 Jan;33(1):50-7. doi: 10.1016/j.compmedimag.2008.10.001. Epub 2008 Nov 21.

引用本文的文献

2
Development of new descriptor for melanoma detection on dermoscopic images.开发用于在皮肤镜图像上检测黑色素瘤的新描述符。
Med Biol Eng Comput. 2020 Nov;58(11):2711-2723. doi: 10.1007/s11517-020-02248-z. Epub 2020 Aug 31.

本文引用的文献

3
Automated melanoma recognition.黑色素瘤自动识别
IEEE Trans Med Imaging. 2001 Mar;20(3):233-9. doi: 10.1109/42.918473.
5
Who removes pigmented skin lesions?谁会去除色素沉着性皮肤病变?
J Am Acad Dermatol. 1997 May;36(5 Pt 1):721-6. doi: 10.1016/s0190-9622(97)80324-6.
9
Computer image analysis in the diagnosis of melanoma.计算机图像分析在黑色素瘤诊断中的应用
J Am Acad Dermatol. 1994 Dec;31(6):958-64. doi: 10.1016/s0190-9622(94)70264-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验