Suppr超能文献

PF-IND:用于分离植物和真菌序列的概率算法及软件。

PF-IND: probability algorithm and software for separation of plant and fungal sequences.

作者信息

Maor R, Kosman E, Golobinski R, Goodwin P, Sharon A

机构信息

Department of Plant Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.

出版信息

Curr Genet. 2003 Jul;43(4):296-302. doi: 10.1007/s00294-003-0394-3. Epub 2003 Apr 29.

Abstract

The separation of plant and fungal sequences in EST pools by bioinformatic methods is difficult because of sequence similarities between plants and fungi, lack of enough sequence information, and the short length of the isolated fragments. An algorithm and software that utilize the differences in codon usage bias to discriminate between plant and fungal sequences are described. The software (PF-IND) includes five pairs of fungi and their host plants that can be used to analyze a large number of related species. Analysis of a sequence provides an arbitrary value that defines the likelihood that a sequence will be a fungal or a plant gene. The software can distinguish between homologous fungal and plant genes and it helps identify the correct reading frame of unknown expressed sequence tags (ESTs) for which BLAST analyses do not provide clear information. Short sequences of 100-150 bp can be analyzed with high confidence. PF-IND analysis of 100 sequences derived from fungal infected plants identified the origin of 94 sequences. Only 66 sequences were identified by a BLASTX analysis of the same 100 ESTs. Overall, PF-IND is a novel bioinformatic tool aimed at assisting the research of fungus-plant interactions.

摘要

由于植物和真菌之间的序列相似性、缺乏足够的序列信息以及分离片段的长度较短,通过生物信息学方法在EST文库中分离植物和真菌序列是困难的。本文描述了一种利用密码子使用偏好差异来区分植物和真菌序列的算法及软件。该软件(PF-IND)包括五对真菌及其宿主植物,可用于分析大量相关物种。对序列进行分析会提供一个任意值,该值定义了一个序列是真菌基因还是植物基因的可能性。该软件能够区分同源的真菌和植物基因,并且有助于识别那些BLAST分析无法提供明确信息的未知表达序列标签(EST)的正确阅读框。100 - 150 bp的短序列能够被高度准确地分析。对来自真菌感染植物的100个序列进行PF-IND分析确定了其中94个序列的来源。对相同的100个EST进行BLASTX分析仅鉴定出66个序列。总体而言,PF-IND是一种旨在辅助真菌与植物相互作用研究的新型生物信息学工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验