Suppr超能文献

使用非侵入性外部标记物量化呼吸过程中膈肌运动的可预测性。

Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker.

作者信息

Vedam S S, Kini V R, Keall P J, Ramakrishnan V, Mostafavi H, Mohan R

机构信息

Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Med Phys. 2003 Apr;30(4):505-13. doi: 10.1118/1.1558675.

Abstract

The aim of this work was to quantify the ability to predict intrafraction diaphragm motion from an external respiration signal during a course of radiotherapy. The data obtained included diaphragm motion traces from 63 fluoroscopic lung procedures for 5 patients, acquired simultaneously with respiratory motion signals (an infrared camera-based system was used to track abdominal wall motion). During these sessions, the patients were asked to breathe either (i) without instruction, (ii) with audio prompting, or (iii) using visual feedback. A statistical general linear model was formulated to describe the relationship between the respiration signal and diaphragm motion over all sessions and for all breathing training types. The model parameters derived from the first session for each patient were then used to predict the diaphragm motion for subsequent sessions based on the respiration signal. Quantification of the difference between the predicted and actual motion during each session determined our ability to predict diaphragm motion during a course of radiotherapy. This measure of diaphragm motion was also used to estimate clinical target volume (CTV) to planning target volume (PTV) margins for conventional, gated, and proposed four-dimensional (4D) radiotherapy. Results from statistical analysis indicated a strong linear relationship between the respiration signal and diaphragm motion (p<0.001) over all sessions, irrespective of session number (p=0.98) and breathing training type (p=0.19). Using model parameters obtained from the first session, diaphragm motion was predicted in subsequent sessions to within 0.1 cm (1 sigma) for gated and 4D radiotherapy. Assuming a 0.4 cm setup error, superior-inferior CTV-PTV margins of 1.1 cm for conventional radiotherapy could be reduced to 0.8 cm for gated and 4D radiotherapy. The diaphragm motion is strongly correlated with the respiration signal obtained from the abdominal wall. This correlation can be used to predict diaphragm motion, based on the respiration signal, to within 0.1 cm (1 sigma) over a course of radiotherapy.

摘要

这项工作的目的是量化在放射治疗过程中根据外部呼吸信号预测分次治疗期间膈肌运动的能力。获得的数据包括5名患者63次荧光透视肺部检查的膈肌运动轨迹,这些数据与呼吸运动信号同时采集(使用基于红外摄像头的系统跟踪腹壁运动)。在这些检查过程中,要求患者分别以以下方式呼吸:(i) 无指令;(ii) 有音频提示;或(iii) 使用视觉反馈。建立了一个统计通用线性模型来描述所有检查以及所有呼吸训练类型下呼吸信号与膈肌运动之间的关系。然后,将从每位患者第一次检查中得出的模型参数用于根据呼吸信号预测后续检查的膈肌运动。每次检查期间预测运动与实际运动之间差异的量化确定了我们在放射治疗过程中预测膈肌运动的能力。这种膈肌运动测量方法还用于估计传统、门控和提议的四维(4D)放射治疗中临床靶区(CTV)到计划靶区(PTV)的边界。统计分析结果表明,在所有检查中,无论检查次数(p = 0.98)和呼吸训练类型(p = 0.19)如何,呼吸信号与膈肌运动之间都存在很强的线性关系(p < 0.001)。使用从第一次检查中获得的模型参数,在门控和4D放射治疗中,后续检查中膈肌运动的预测误差在0.1 cm(1标准差)以内。假设设置误差为0.4 cm,传统放射治疗中CTV - PTV的上下边界为1.1 cm,门控和4D放射治疗可降至0.8 cm。膈肌运动与从腹壁获得的呼吸信号密切相关。这种相关性可用于在放射治疗过程中根据呼吸信号将膈肌运动预测在0.1 cm(1标准差)以内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验