Suppr超能文献

脊椎动物进化与发育过程中表面活性剂胆固醇的模式:个体发育会重演系统发育吗?

The pattern of surfactant cholesterol during vertebrate evolution and development: does ontogeny recapitulate phylogeny?

作者信息

Orgeig Sandra, Daniels Christopher B, Johnston Sonya D, Sullivan Lucy C

机构信息

Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

Reprod Fertil Dev. 2003;15(1-2):55-73. doi: 10.1071/rd02087.

Abstract

Pulmonary surfactant is a complex mixture of phospholipids (PLs), neutral lipids and proteins that lines the inner surface of the lung. Here it modulates surface tension, thereby increasing lung compliance and preventing the transudation of fluid. In humans, pulmonary surfactant is comprised of approximately 80% PLs, 12% neutral lipids and 8% protein. In most eutherian (i.e. placental) mammals, cholesterol (Chol) comprises approximately 8-10% by weight or 14-20 mol% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. The lipid composition is highly conserved within the vertebrates, except that surfactant of teleost fish is dominated by cholesterol, whereas tetrapod pulmonary surfactant contains a high proportion of disaturated phospholipids (DSPs). The primitive Australian dipnoan lungfish Neoceratodus forsterii demonstrates a 'fish-type' surfactant profile, whereas the other derived dipnoans demonstrate a surfactant profile similar to that of tetrapods. Homology of the surfactant proteins within the vertebrates points to a single evolutionary origin for the system and indicates that fish surfactant is a 'protosurfactant'. Among the terrestrial tetrapods, the relative proportions of DSPs and cholesterol vary in response to lung structure, habitat and body temperature (Tb), but not in relation to phylogeny. The cholesterol content of surfactant is elevated in species with simple saccular lungs or in aquatic species or in species with low Tb. The DSP content is highest in complex lungs, particularly of aquatic species or species with high Tb. Cholesterol is controlled separately from the PL component in surfactant. For example, in heterothermic mammals (i.e. mammals that vary their body temperature), the relative amount of cholesterol increases in cold animals. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently. In mammals, the pulmonary surfactant system develops towards the end of gestation and is characterized by an increase in the saturation of PLs in lung washings and the appearance of surfactant proteins in amniotic fluid. In general, the pattern of surfactant development is highly conserved among the amniotes. This conservation of process is demonstrated by an increase in the amount and saturation of the surfactant PLs in the final stages (>75%) of development. Although the ratios of surfactant components (Chol, PL and DSP) are remarkably similar at the time of hatching/birth, the relative timing of the maturation of the lipid profiles differs dramatically between species. The uniformity of composition between species, despite differences in lung morphology, birthing strategy and relationship to each other, implies that the ratios are critical for the onset of pulmonary ventilation. The differences in the timing, on the other hand, appear to relate primarily to birthing strategy and the onset of air breathing. As the amount of cholesterol relative to the phospholipids is highly elevated in immature lungs, the pattern of cholesterol during development and evolution represents an example of ontogeny recapitulating phylogeny. The fact that cholesterol is an important component of respiratory structures that are primitive, when they are not in use or developing in an embryo, demonstrates that this substance has important and exciting roles in surfactant. These roles still remain to be explored.

摘要

肺表面活性物质是一种由磷脂(PLs)、中性脂质和蛋白质组成的复杂混合物,覆盖在肺的内表面。在这里,它调节表面张力,从而增加肺顺应性并防止液体渗出。在人类中,肺表面活性物质约由80%的PLs、12%的中性脂质和8%的蛋白质组成。在大多数真兽亚纲(即有胎盘)哺乳动物中,胆固醇(Chol)占肺泡和板层体表面活性物质重量的约8 - 10%或摩尔百分比的14 - 20%。它被视为肺表面活性物质的一个组成部分,但很少有研究关注其功能或调控。脊椎动物体内的脂质组成高度保守,只是硬骨鱼的表面活性物质以胆固醇为主,而四足动物的肺表面活性物质含有高比例的二饱和磷脂(DSPs)。原始的澳大利亚肺鱼新角齿鱼表现出“鱼类型”表面活性物质特征,而其他进化的肺鱼则表现出与四足动物相似的表面活性物质特征。脊椎动物体内表面活性蛋白的同源性表明该系统有单一的进化起源,并表明鱼类表面活性物质是一种“原始表面活性物质”。在陆生四足动物中,DSPs和胆固醇的相对比例因肺结构、栖息地和体温(Tb)而变化,但与系统发育无关。表面活性物质中胆固醇含量在具有简单囊状肺的物种、水生物种或低体温物种中升高。DSP含量在复杂肺中最高,特别是水生物种或高体温物种。表面活性物质中胆固醇与PL成分是分开调控的。例如,在异温哺乳动物(即体温变化的哺乳动物)中,寒冷时动物体内胆固醇的相对含量增加。胆固醇与PL比例随各种生理刺激的快速变化表明这两种成分有不同的周转率,且可能以不同方式包装和加工。在哺乳动物中,肺表面活性物质系统在妊娠末期发育,其特征是肺灌洗中PLs饱和度增加以及羊水出现表面活性蛋白。一般来说,表面活性物质的发育模式在羊膜动物中高度保守。这种过程的保守性表现为发育最后阶段(>75%)表面活性物质PLs的量和饱和度增加。尽管孵化/出生时表面活性物质成分(胆固醇、PL和DSP)的比例非常相似,但不同物种脂质谱成熟的相对时间差异很大。尽管肺形态、分娩策略及相互关系存在差异,但物种间组成的一致性意味着这些比例对肺通气的开始至关重要。另一方面,时间上的差异似乎主要与分娩策略和空气呼吸的开始有关。由于未成熟肺中胆固醇相对于磷脂含量大幅升高,发育和进化过程中胆固醇的模式代表了个体发育重演系统发育的一个例子。胆固醇是胚胎中未使用或正在发育的原始呼吸结构的重要组成部分,这一事实表明该物质在表面活性物质中具有重要且令人兴奋的作用。这些作用仍有待探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验