Suppr超能文献

植物中重组抗体的分子农业

Molecular farming of recombinant antibodies in plants.

作者信息

Schillberg S, Fischer R, Emans N

机构信息

Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Grafschaft, Auf dem Aberg 1, 57392 Schmallenberg, Germany.

出版信息

Cell Mol Life Sci. 2003 Mar;60(3):433-45. doi: 10.1007/s000180300037.

Abstract

Antibodies represent a large proportion of therapeutic drugs currently in development. In most cases, they are produced in mammalian cell lines or transgenic animals because these have been shown to fold and assemble the proteins correctly and generate authentic glycosylation patterns. However, such expression systems are expensive, difficult to scale up and there are safety concerns due to potential contamination with pathogenic organisms or oncogenic DNA sequences. Plants represent an inexpensive, efficient and safe alternative for the production of recombinant antibodies. Research over the last 10 years has shown that plants can produce a variety of functional antibodies and there is now intense interest in scaling up production to commercial levels. In this review, we discuss the advantages of plants over traditional expression systems, describe how antibody expression in plants is achieved and optimized and then consider the practical issues concerning large-scale molecular farming in plants. The first plant-produced therapeutic antibodies are already in clinical trials, and, given the economic benefits of this production system, we are likely to see many more recombinant antibodies produced in this manner in the future.

摘要

抗体在目前正在研发的治疗性药物中占很大比例。在大多数情况下,它们是在哺乳动物细胞系或转基因动物中生产的,因为这些已被证明能够正确折叠和组装蛋白质并产生真实的糖基化模式。然而,这种表达系统成本高昂、难以扩大规模,并且由于可能被致病生物或致癌DNA序列污染而存在安全隐患。植物是生产重组抗体的一种廉价、高效且安全的替代选择。过去十年的研究表明,植物能够产生多种功能性抗体,目前人们对将生产规模扩大到商业水平有着浓厚兴趣。在这篇综述中,我们讨论了植物相对于传统表达系统的优势,描述了如何在植物中实现并优化抗体表达,然后考虑了与植物大规模分子农业相关的实际问题。首批植物生产的治疗性抗体已进入临床试验,鉴于这种生产系统的经济效益,我们未来可能会看到更多以这种方式生产的重组抗体。

相似文献

1
Molecular farming of recombinant antibodies in plants.
Cell Mol Life Sci. 2003 Mar;60(3):433-45. doi: 10.1007/s000180300037.
2
'Molecular farming' of antibodies in plants.
Naturwissenschaften. 2003 Apr;90(4):145-55. doi: 10.1007/s00114-002-0400-5. Epub 2003 Feb 18.
3
Molecular farming of pharmaceutical proteins.
Transgenic Res. 2000;9(4-5):279-99; discussion 277. doi: 10.1023/a:1008975123362.
4
Production systems for recombinant antibodies.
Front Biosci. 2008 May 1;13:4576-94. doi: 10.2741/3024.
5
Production of antibodies in plants and their use for global health.
Vaccine. 2003 Jan 30;21(7-8):820-5. doi: 10.1016/s0264-410x(02)00607-2.
6
Antibody production by molecular farming in plants.
J Biol Regul Homeost Agents. 2000 Apr-Jun;14(2):83-92.
7
Production of secretory IgA antibodies in plants.
Biomol Eng. 2001 Oct 15;18(3):87-94. doi: 10.1016/s1389-0344(01)00102-2.
8
Molecular farming of recombinant antibodies in plants.
Biol Chem. 1999 Jul-Aug;380(7-8):825-39. doi: 10.1515/BC.1999.102.
10
Molecular farming on rescue of pharma industry for next generations.
Crit Rev Biotechnol. 2016 Oct;36(5):840-50. doi: 10.3109/07388551.2015.1049934. Epub 2015 Jun 4.

引用本文的文献

2
Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines.
Vaccines (Basel). 2025 Feb 15;13(2):191. doi: 10.3390/vaccines13020191.
3
The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles.
J Biol Eng. 2023 Oct 5;17(1):63. doi: 10.1186/s13036-023-00383-3.
4
Production of Recombinant Active Human TGFβ1 in .
Front Plant Sci. 2022 May 31;13:922694. doi: 10.3389/fpls.2022.922694. eCollection 2022.
5
De novo transcriptome assembly of transgenic tobacco ( NC89) with early senescence characteristic.
Physiol Mol Biol Plants. 2021 Feb;27(2):237-249. doi: 10.1007/s12298-021-00953-z. Epub 2021 Feb 19.
6
Overexpression and Purification of Carbonic Anhydrase (GcCAα3) in , and Its Immobilization and Use in CO Hydration Reactions.
Front Plant Sci. 2020 Nov 19;11:563721. doi: 10.3389/fpls.2020.563721. eCollection 2020.
7
Short-chain isoprenyl diphosphate synthases of lavender (Lavandula).
Plant Mol Biol. 2020 Mar;102(4-5):517-535. doi: 10.1007/s11103-020-00962-8. Epub 2020 Jan 11.
8
Plant-derived chimeric antibodies inhibit the invasion of human fibroblasts by .
PeerJ. 2018 Dec 11;6:e5780. doi: 10.7717/peerj.5780. eCollection 2018.
9
Transient Expression of Biologically Active Anti-rabies Virus Monoclonal Antibody in Tobacco Leaves.
Iran J Biotechnol. 2018 Apr 18;16(1):e1774. doi: 10.21859/ijb.1774. eCollection 2018 Apr.
10
Cost-effective production of tag-less recombinant protein in Nicotiana benthamiana.
Plant Biotechnol J. 2019 Jun;17(6):1094-1105. doi: 10.1111/pbi.13040. Epub 2018 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验