Suppr超能文献

荧光分光光度法作为分批补料发酵中一种估算工具的评估。

Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations.

作者信息

Hagedorn Andrea, Legge Raymond L, Budman Hector

机构信息

Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.

出版信息

Biotechnol Bioeng. 2003 Jul 5;83(1):104-11. doi: 10.1002/bit.10649.

Abstract

Native culture fluorescence was investigated as an additional source of information for predicting biomass and glucose concentrations in a fed-batch fermentation of Alcaligenes eutrophus. Partial least squares (PLS) regression and a feed forward neural network (FFNN) coupled with principle component analysis (PCA) were each used to model the kinetics of the fermentation. Data from three fermentations was combined to form a training set for model calibration and data from a fourth fermentation was used as the testing set. The fluorescent soft-sensors were compared with a previously developed feed forward neural network soft-sensor model which used oxygen uptake rate (OUR), carbon dioxide evolution rate (CER), aeration rate, feed rate, and fermentor volume to estimate biomass and glucose concentrations. The best model performance for predicting both biomass and glucose concentrations was achieved using the native fluorescence-based models. Real data predictions of the biomass concentration in the testing set were obtained using both the PLS and FFNN PCA modeling utilizing fluorescence measurements plus the rate of change of the fluorescence measurements. Accurate predictions of the glucose concentration in the testing set were obtained using the FFNN PCA modeling technique utilizing the rate of change of the fluorescence measurements. Substrate exhaustion was indicated qualitatively by a first-order PLS model utilizing the rate of change of fluorescence measurements. These results indicate that native culture fluorescence shows promise for providing additional valuable information to enhance predictive modeling which cannot be extracted from other easily acquired measurements.

摘要

在真养产碱杆菌的补料分批发酵中,研究了天然培养物荧光作为预测生物量和葡萄糖浓度的额外信息来源。分别使用偏最小二乘(PLS)回归和结合主成分分析(PCA)的前馈神经网络(FFNN)对发酵动力学进行建模。将三次发酵的数据合并形成用于模型校准的训练集,并将第四次发酵的数据用作测试集。将荧光软传感器与先前开发的前馈神经网络软传感器模型进行比较,该模型使用氧摄取速率(OUR)、二氧化碳释放速率(CER)、通气速率、进料速率和发酵罐体积来估计生物量和葡萄糖浓度。使用基于天然荧光的模型在预测生物量和葡萄糖浓度方面实现了最佳模型性能。利用荧光测量值以及荧光测量值的变化率,通过PLS和FFNN PCA建模获得了测试集中生物量浓度的实际数据预测值。利用荧光测量值的变化率,通过FFNN PCA建模技术获得了测试集中葡萄糖浓度的准确预测值。利用荧光测量值变化率的一阶PLS模型定性地表明了底物耗尽情况。这些结果表明,天然培养物荧光有望提供额外的有价值信息,以增强预测建模,而这些信息无法从其他容易获得的测量中提取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验