Kellis Manolis, Patterson Nick, Endrizzi Matthew, Birren Bruce, Lander Eric S
Whitehead/MIT Center for Genome Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
Nature. 2003 May 15;423(6937):241-54. doi: 10.1038/nature01644.
Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.
识别基因组中编码的功能元件是现代生物学的主要挑战之一。比较基因组学应提供一种强大的通用方法。在此,我们基于三个相关物种(奇异酵母、米卡塔酵母和贝酵母)的高质量草图序列,对酿酒酵母进行了比较分析。我们首先比对了基因组并对其进化进行了表征,确定了变化的区域和机制。然后我们开发了直接识别基因和调控基序的方法。基因分析对酵母基因目录进行了重大修订,影响了约15%的所有基因,并使基因总数减少了约500个。基序分析自动识别出72个全基因组元件,包括大多数已知的调控基序和许多新的基序。我们推断出这些基序中的大多数的推定功能,并深入了解了它们的组合相互作用。这些结果对包括人类在内的各种生物的基因组分析具有启示意义。