Suppr超能文献

不同的基因组稳定程序会导致新产生的种间酵母杂交体出现表型变异。

Distinct genome stabilization procedures lead to phenotypic variability in newly generated interspecific yeast hybrids.

作者信息

Murath Pablo, Hoffmann Stephanie, Herrera-Malaver Beatriz, Bustamante Luis, Verstrepen Kevin, Steensels Jan

机构信息

Departmento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.

Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.

出版信息

Front Microbiol. 2025 Jan 29;16:1472832. doi: 10.3389/fmicb.2025.1472832. eCollection 2025.

Abstract

Yeast cells sometimes engage in interspecific hybridization, i.e., crosses between different species. These interspecific yeast hybrids combine phenotypes of the two parental species and can therefore allow fast adaptation to new niches. This is perhaps most evident in beer yeasts, where a cross between and led to the emergence of the lager yeast , which combines the fermentation capacity of with the cold tolerance of , making the hybrid suitable for the typical cool lager beer fermentation conditions. Interestingly, however, merging two different genomes into one cell causes genomic instability and rearrangements, ultimately leading to a reorganized but more stable hybrid genome. Here, we investigate how different parameters influence this genome stabilization trajectory and ultimately can lead to variants with different industrial phenotypes. We generated seven interspecific hybrids between two strains and an ale strain, subsequently exposing them to three different genome stabilization procedures. Next, we analyzed the fermentation characteristics and metabolite production of selected stabilized hybrids. Our results reveal how variation in the genome stabilization procedure leads to phenotypic variability and can generate additional diversity after the initial hybridization process. Moreover, several stabilized hybrids showed phenotypes that are interesting for industrial applications.

摘要

酵母细胞有时会进行种间杂交,即不同物种之间的杂交。这些种间酵母杂种结合了两个亲本物种的表型,因此能够快速适应新的生态位。这在啤酒酵母中可能最为明显,其中[亲本物种1]和[亲本物种2]之间的杂交导致了拉格酵母[杂种名称]的出现,它将[亲本物种1]的发酵能力与[亲本物种2]的耐寒性结合在一起,使得该杂种适合典型的低温拉格啤酒发酵条件。然而,有趣的是,将两个不同的基因组合并到一个细胞中会导致基因组不稳定和重排,最终导致一个重组但更稳定的杂种基因组。在这里,我们研究了不同参数如何影响这种基因组稳定轨迹,并最终导致具有不同工业表型的变体。我们在两个[亲本物种1]菌株和一个爱尔[亲本物种2]菌株之间产生了七个种间杂种,随后将它们暴露于三种不同的基因组稳定程序中。接下来,我们分析了选定的稳定杂种的发酵特性和代谢产物产量。我们的结果揭示了基因组稳定程序的变化如何导致表型变异性,并在初始杂交过程后产生额外的多样性。此外,几个稳定杂种表现出对工业应用有意义的表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验