Nam J M, Gart J J
Ann Hum Genet. 1976 Jan;39(3):361-73. doi: 10.1111/j.1469-1809.1976.tb00141.x.
Although the simple and adjusted Bernstein's methods are fully efficient for m=2 and m=3 (ABO system) respectively, their efficiency declines for larger values of m. For m greater than or equal to 4, the adjusted or modified Bernstein's method with a single counting iteration leads to a nearly efficient estimator. A single degree of freedom chi-square test of the Hardy-Weinberg law for all m is derived. Some findings on the statistical efficiency of typing various numbers of antigens are given. All the results are illustrated in numerical examples.
虽然简单的和调整后的伯恩斯坦方法分别对m = 2和m = 3(ABO系统)完全有效,但对于更大的m值,它们的效率会下降。对于m大于或等于4,具有单次计数迭代的调整或修正的伯恩斯坦方法会得到一个近乎有效的估计量。推导了适用于所有m的哈迪-温伯格定律的单自由度卡方检验。给出了关于不同抗原数量分型的统计效率的一些发现。所有结果都用数值例子进行了说明。