Suppr超能文献

转录对四膜虫核酶折叠的影响。

Effect of transcription on folding of the Tetrahymena ribozyme.

作者信息

Heilman-Miller Susan L, Woodson Sarah A

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA.

出版信息

RNA. 2003 Jun;9(6):722-33. doi: 10.1261/rna.5200903.

Abstract

Sequential formation of RNA interactions during transcription can bias the folding pathway and ultimately determine the functional state of a transcript. The kinetics of cotranscriptional folding of the Tetrahymena L-21 ribozyme was compared with refolding of full-length transcripts under the same conditions. Sequential folding after transcription by phage T7 or Escherichia coli polymerase is only twice as fast as refolding, and the yield of native RNA is the same. By contrast, a greater fraction of circularly permuted variants folded correctly at early times during transcription than during refolding. Hybridization of complementary oligonucleotides suggests that cotranscriptional folding enables a permuted RNA beginning at G303 to escape non-native interactions in P3 and P9. We propose that base pairing of upstream sequences during transcription elongation favors branched secondary structures that increase the probability of forming the native ribozyme structure.

摘要

转录过程中RNA相互作用的顺序形成可使折叠途径产生偏差,并最终决定转录本的功能状态。将嗜热四膜虫L-21核酶的共转录折叠动力学与相同条件下全长转录本的重折叠动力学进行了比较。噬菌体T7或大肠杆菌聚合酶转录后的顺序折叠速度仅比重折叠快两倍,且天然RNA的产量相同。相比之下,与重折叠过程相比,更多比例的环状置换变体在转录早期正确折叠。互补寡核苷酸的杂交表明,共转录折叠使从G303开始的置换RNA能够避免P3和P9中的非天然相互作用。我们提出,转录延伸过程中上游序列的碱基配对有利于形成分支二级结构,从而增加形成天然核酶结构的可能性。

相似文献

1
Effect of transcription on folding of the Tetrahymena ribozyme.
RNA. 2003 Jun;9(6):722-33. doi: 10.1261/rna.5200903.
2
Communication between RNA folding domains revealed by folding of circularly permuted ribozymes.
J Mol Biol. 2007 Oct 12;373(1):197-210. doi: 10.1016/j.jmb.2007.07.007. Epub 2007 Jul 12.
3
Perturbed folding kinetics of circularly permuted RNAs with altered topology.
J Mol Biol. 2003 Apr 25;328(2):385-94. doi: 10.1016/s0022-2836(03)00304-8.
5
Folding pathways of the Tetrahymena ribozyme.
J Mol Biol. 2014 Jun 12;426(12):2300-12. doi: 10.1016/j.jmb.2014.04.011. Epub 2014 Apr 18.
8
Effects of flanking regions on HDV cotranscriptional folding kinetics.
RNA. 2018 Sep;24(9):1229-1240. doi: 10.1261/rna.065961.118. Epub 2018 Jun 28.
9
Maximizing RNA folding rates: a balancing act.
RNA. 2000 Jun;6(6):790-4. doi: 10.1017/s1355838200000522.
10
A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.
FEBS Lett. 2001 Mar 30;493(2-3):95-100. doi: 10.1016/s0014-5793(01)02279-7.

引用本文的文献

1
Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis.
Mol Cell. 2025 Apr 17;85(8):1561-1574.e5. doi: 10.1016/j.molcel.2025.02.025. Epub 2025 Mar 25.
2
Structural basis of circularly permuted group II intron self-splicing.
Nat Struct Mol Biol. 2025 Jan 31. doi: 10.1038/s41594-025-01484-x.
3
RNA folding kinetics control riboswitch sensitivity in vivo.
Nat Commun. 2025 Jan 22;16(1):953. doi: 10.1038/s41467-024-55601-3.
4
Therapeutic applications of RNA nanostructures.
RSC Adv. 2024 Sep 11;14(39):28807-28821. doi: 10.1039/d4ra03823a. eCollection 2024 Sep 4.
5
RNA structure in alternative splicing regulation: from mechanism to therapy.
Acta Biochim Biophys Sin (Shanghai). 2024 Jul 22;57(1):3-21. doi: 10.3724/abbs.2024119.
6
RNA folding kinetics control riboswitch sensitivity in vivo.
bioRxiv. 2024 Mar 29:2024.03.29.587317. doi: 10.1101/2024.03.29.587317.
7
Dynamic RNA synthetic biology: new principles, practices and potential.
RNA Biol. 2023 Jan;20(1):817-829. doi: 10.1080/15476286.2023.2269508. Epub 2023 Dec 3.
8
Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing.
Nat Commun. 2023 Nov 29;14(1):7839. doi: 10.1038/s41467-023-43395-9.
9
Small RNAs and Hfq capture unfolded RNA target sites during transcription.
Mol Cell. 2023 May 4;83(9):1489-1501.e5. doi: 10.1016/j.molcel.2023.04.003. Epub 2023 Apr 27.
10
A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery.
Cell. 2023 Mar 16;186(6):1244-1262.e34. doi: 10.1016/j.cell.2023.02.008.

本文引用的文献

1
Perturbed folding kinetics of circularly permuted RNAs with altered topology.
J Mol Biol. 2003 Apr 25;328(2):385-94. doi: 10.1016/s0022-2836(03)00304-8.
5
Configurational diffusion down a folding funnel describes the dynamics of DNA hairpins.
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7771-6. doi: 10.1073/pnas.131477798.
6
Non-Arrhenius kinetics for the loop closure of a DNA hairpin.
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5584-9. doi: 10.1073/pnas.101523498. Epub 2001 Apr 24.
7
Recent insights on RNA folding mechanisms from catalytic RNA.
Cell Mol Life Sci. 2000 May;57(5):796-808. doi: 10.1007/s000180050042.
8
A single-molecule study of RNA catalysis and folding.
Science. 2000 Jun 16;288(5473):2048-51. doi: 10.1126/science.288.5473.2048.
10
Metastable structures and refolding kinetics in hok mRNA of plasmid R1.
RNA. 1999 Nov;5(11):1408-18. doi: 10.1017/s1355838299990805.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验