Bushhouse David Z, Fu Jiayu, Lucks Julius B
Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
Nat Commun. 2025 Jan 22;16(1):953. doi: 10.1038/s41467-024-55601-3.
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures and regulatory mechanisms demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
核糖开关是配体响应性基因调控RNA元件,在维持细胞内稳态中发挥关键作用。了解核糖开关对配体的敏感性(EC)是如何控制的,对于解释高度保守的适体结构域如何在具有不同敏感性需求的各种环境中发挥作用至关重要。在这里,我们揭示了RNA折叠动力学控制细胞中核糖开关敏感性的作用机制。通过研究拜氏梭菌pfl ZTP核糖开关,我们确定了多种改变表达平台序列和结构以减缓RNA折叠的机制途径,所有这些都增强了核糖开关的敏感性。将这些方法应用于具有不同适体结构和调控机制的核糖开关,证明了我们研究结果的普遍性,表明任何在动力学状态下运作的核糖开关都可以通过减缓表达平台折叠而变得更加敏感。我们的研究结果增加了越来越多可用于合理设计共转录RNA折叠以用于生物技术应用的知识和方法,并为理解生物学其他领域的动态RNA系统提出了一般RNA折叠原则。