Suppr超能文献

两种真菌β-1,4-半乳糖苷酶的结构:探寻最适温度和pH的基础

Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum.

作者信息

Le Nours Jérôme, Ryttersgaard Carsten, Lo Leggio Leila, Østergaard Peter Rahbek, Borchert Torben Vedel, Christensen Lars Lehmann Hylling, Larsen Sine

机构信息

Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.

出版信息

Protein Sci. 2003 Jun;12(6):1195-204. doi: 10.1110/ps.0300103.

Abstract

beta-1,4-Galactanases hydrolyze the galactan side chains that are part of the complex carbohydrate structure of the pectin. They are assigned to family 53 of the glycoside hydrolases and display significant variations in their pH and temperature optimum and stability. Two fungal beta-1,4-galactanases from Myceliophthora thermophila and Humicola insolens have been cloned and heterologously expressed, and the crystal structures of the gene products were determined. The structures are compared to the previously only known family 53 structure of the galactanase from Aspergillus aculeatus (AAGAL) showing approximately 56% identity. The M. thermophila and H. insolens galactanases are thermophilic enzymes and are most active at neutral to basic pH, whereas AAGAL is mesophilic and most active at acidic pH. The structure of the M. thermophila galactanase (MTGAL) was determined from crystals obtained with HEPES and TRIS buffers to 1.88 A and 2.14 A resolution, respectively. The structure of the H. insolens galactanase (HIGAL) was determined to 2.55 A resolution. The thermostability of MTGAL and HIGAL correlates with increase in the protein rigidity and electrostatic interactions, stabilization of the alpha-helices, and a tighter packing. An inspection of the active sites in the three enzymes identifies several amino acid substitutions that could explain the variation in pH optimum. Examination of the activity as a function of pH for the D182N mutant of AAGAL and the A90S/ H91D mutant of MTGAL showed that the difference in pH optimum between AAGAL and MTGAL is at least partially associated with differences in the nature of residues at positions 182, 90, and/or 91.

摘要

β-1,4-半乳聚糖酶可水解作为果胶复合碳水化合物结构一部分的半乳聚糖侧链。它们被归为糖苷水解酶家族53,在最适pH值、最适温度和稳定性方面表现出显著差异。已克隆并异源表达了来自嗜热毁丝霉和特异腐质霉的两种真菌β-1,4-半乳聚糖酶,并测定了基因产物的晶体结构。将这些结构与之前仅知的来自棘孢曲霉的半乳聚糖酶(AAGAL)的家族53结构进行比较,显示出约56%的同一性。嗜热毁丝霉和特异腐质霉的半乳聚糖酶是嗜热酶,在中性至碱性pH下活性最高,而AAGAL是嗜温酶,在酸性pH下活性最高。嗜热毁丝霉半乳聚糖酶(MTGAL)的结构分别由用HEPES和TRIS缓冲液获得的晶体确定,分辨率为1.88 Å和2.14 Å。特异腐质霉半乳聚糖酶(HIGAL)的结构确定分辨率为2.55 Å。MTGAL和HIGAL的热稳定性与蛋白质刚性和静电相互作用的增加、α-螺旋的稳定以及更紧密的堆积相关。对这三种酶活性位点的检查发现了几个氨基酸取代,这些取代可以解释最适pH值的差异。对AAGAL的D182N突变体和MTGAL的A90S/H9lD突变体的pH活性函数检查表明,AAGAL和MTGAL之间最适pH值的差异至少部分与182、90和/或91位残基性质的差异有关。

相似文献

2
Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase.
Comput Struct Biotechnol J. 2015 Apr 9;13:256-64. doi: 10.1016/j.csbj.2015.03.010. eCollection 2015.
5
Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose.
Acta Crystallogr F Struct Biol Commun. 2019 Jun 1;75(Pt 6):399-404. doi: 10.1107/S2053230X19005612. Epub 2019 May 10.
6
Activity of three β-1,4-galactanases on small chromogenic substrates.
Carbohydr Res. 2011 Sep 27;346(13):2028-33. doi: 10.1016/j.carres.2011.05.017. Epub 2011 May 27.
7
Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase.
Appl Biochem Biotechnol. 2016 Dec;180(7):1313-1327. doi: 10.1007/s12010-016-2169-6. Epub 2016 Jun 23.
9
Molecular cloning and expression in Pichia pastoris of a Irpex lacteus exo-beta-(1-->3)-galactanase gene.
Biosci Biotechnol Biochem. 2009 Oct;73(10):2303-9. doi: 10.1271/bbb.90433. Epub 2009 Oct 7.
10
Functional characterization of the galactan utilization system of Geobacillus stearothermophilus.
FEBS J. 2013 Feb;280(3):950-64. doi: 10.1111/febs.12089. Epub 2013 Jan 7.

引用本文的文献

2
Structure-Based Design of Acetolactate Synthase From Improved Protein Stability Under Acidic Conditions.
Front Microbiol. 2020 Oct 27;11:582909. doi: 10.3389/fmicb.2020.582909. eCollection 2020.
3
Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose.
Acta Crystallogr F Struct Biol Commun. 2019 Jun 1;75(Pt 6):399-404. doi: 10.1107/S2053230X19005612. Epub 2019 May 10.
4
The use of -mediated insertional mutagenesis sequencing to identify novel genes of involved in cellulase production.
3 Biotech. 2018 Mar;8(3):153. doi: 10.1007/s13205-018-1166-6. Epub 2018 Feb 27.
5
Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase.
Comput Struct Biotechnol J. 2015 Apr 9;13:256-64. doi: 10.1016/j.csbj.2015.03.010. eCollection 2015.
6
The binding of zinc ions to Emericella nidulans endo-β-1,4-galactanase is essential for crystal formation.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Aug;69(Pt 8):850-4. doi: 10.1107/S1744309113019714. Epub 2013 Jul 27.
7
Consistent mutational paths predict eukaryotic thermostability.
BMC Evol Biol. 2013 Jan 10;13:7. doi: 10.1186/1471-2148-13-7.
8
Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1.
J Ind Microbiol Biotechnol. 2012 Apr;39(4):547-55. doi: 10.1007/s10295-011-1067-8. Epub 2011 Dec 18.
9
Genetic and biochemical characterization of a protease-resistant mesophilic β-mannanase from Streptomyces sp. S27.
J Ind Microbiol Biotechnol. 2011 Mar;38(3):451-8. doi: 10.1007/s10295-010-0789-3. Epub 2010 Aug 5.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The crystallography beamline I711 at MAX II.
J Synchrotron Radiat. 2000 Jul 1;7(Pt 4):203-8. doi: 10.1107/S0909049500005331.
3
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
6
Aspergillus enzymes involved in degradation of plant cell wall polysaccharides.
Microbiol Mol Biol Rev. 2001 Dec;65(4):497-522, table of contents. doi: 10.1128/MMBR.65.4.497-522.2001.
9
Anisotropic refinement of the structure of Thermoascus aurantiacus xylanase I.
Acta Crystallogr D Biol Crystallogr. 2001 Mar;57(Pt 3):385-92. doi: 10.1107/s0907444900019089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验