Zheng G, Huang W H, Lu X H
School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, P.R. China.
Anal Bioanal Chem. 2003 Jul;376(5):680-5. doi: 10.1007/s00216-003-1910-5. Epub 2003 May 22.
A general regression neural network was used for the first time to study quantitative structure and property relationships of organic pollutants to correlate and predict n-octanol/water partition coefficients of polychlorinated dibenzo- p -dioxins from their topological molecular descriptors. In total, 42 polychlorinated dibenzo- p -dioxins and dibenzo- p -dioxins were available for this study-42 polychlorinated dibenzo- p -dioxins and dibenzo- p -dioxins in the training data set and 41 polychlorinated dibenzo- p -dioxins in the test data set. Partial least squares regression, back propagation network and general regression neural network models were trained using the training data set, and the accuracy of the models obtained were examined by the use of leave-one-out cross-validation. For prediction of the n-octanol/water partition coefficient, the best method is the general regression neural network. With the test data set, the correlation coefficient, root mean square error and mean absolute relative error for the general regression neural network model are 0.9276, 0.22 and 2.79%, respectively. For describing the structure of polychlorinated dibenzo- p -dioxins, the topological molecular descriptors outperform the mobile order and disorder thermodynamic method.
首次使用广义回归神经网络研究有机污染物的定量结构与性质关系,以便根据多氯代二苯并 - p - 二噁英的拓扑分子描述符关联和预测其正辛醇/水分配系数。本研究总共使用了42种多氯代二苯并 - p - 二噁英和二苯并 - p - 二噁英——训练数据集中有42种多氯代二苯并 - p - 二噁英和二苯并 - p - 二噁英,测试数据集中有41种多氯代二苯并 - p - 二噁英。使用训练数据集训练了偏最小二乘回归、反向传播网络和广义回归神经网络模型,并通过留一法交叉验证检验所获模型的准确性。对于正辛醇/水分配系数的预测,最佳方法是广义回归神经网络。对于测试数据集,广义回归神经网络模型的相关系数、均方根误差和平均绝对相对误差分别为0.9276、0.22和2.79%。对于描述多氯代二苯并 - p - 二噁英的结构,拓扑分子描述符优于移动有序和无序热力学方法。